Generative AI Networks: Foundations, Models, Applications, and Future Directions
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-06-23
- 售價: $900
- 貴賓價: 9.5 折 $855
- 語言: 英文
- 頁數: 182
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798329250770
- ISBN-13: 9798329250770
-
相關分類:
人工智慧
海外代購書籍(需單獨結帳)
相關主題
商品描述
"Generative AI Networks: Foundations, Models, Applications, and Future Directions" is a comprehensive guide that delves into the world of generative artificial intelligence (AI). This book begins by establishing the fundamental principles of generative AI, exploring its historical evolution, mathematical foundations in probability theory and neural networks, and deep learning fundamentals essential for understanding advanced generative models.
Moving into the core of the book, readers are introduced to various generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Autoregressive Models. Each model is explained in detail, covering their architectures, training techniques, and practical applications across domains like image generation, text synthesis, and audio composition. Real-world use cases and case studies illustrate how these models are transforming industries such as healthcare, entertainment, and finance.
The book then advances into more sophisticated generative models including Flow-based Models and Diffusion Models, offering insights into their training methodologies and applications. Hybrid and multi-modal generative models are explored, demonstrating how these integrated approaches enhance the capability of AI systems to generate complex and diverse outputs.
Practical considerations and ethical implications of generative AI are thoroughly discussed, emphasizing topics like bias mitigation, fairness, and regulatory considerations. The final chapters explore emerging trends and future directions in generative AI, highlighting ongoing research, challenges, and opportunities for innovation.
商品描述(中文翻譯)
《生成式人工智慧網絡:基礎、模型、應用與未來方向》是一本全面的指南,深入探討生成式人工智慧(AI)的世界。本書首先建立生成式AI的基本原則,探索其歷史演變、在機率論和神經網絡中的數學基礎,以及理解先進生成模型所需的深度學習基礎知識。
進入本書的核心部分,讀者將接觸到各種生成模型,如生成對抗網絡(GANs)、變分自編碼器(VAEs)和自回歸模型。每個模型都詳細解釋,包括其架構、訓練技術以及在圖像生成、文本合成和音頻創作等領域的實際應用。真實案例和案例研究展示了這些模型如何改變醫療、娛樂和金融等行業。
接著,本書深入探討更複雜的生成模型,包括基於流的模型和擴散模型,提供其訓練方法和應用的見解。混合和多模態生成模型也被探討,展示這些整合方法如何增強AI系統生成複雜和多樣化輸出的能力。
本書還徹底討論生成式AI的實際考量和倫理影響,強調如偏見緩解、公平性和監管考量等主題。最後幾章探討生成式AI中的新興趨勢和未來方向,突顯持續的研究、挑戰和創新機會。