Generative AI and Deep Learning: From Fundamentals to Advanced Applications

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-05-30
  • 售價: $670
  • 貴賓價: 9.5$637
  • 語言: 英文
  • 頁數: 160
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798327075610
  • ISBN-13: 9798327075610
  • 相關分類: 人工智慧DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

"Generative AI and Deep Learning: From Fundamentals to Advanced Applications" is a comprehensive guide that explores the exciting field of artificial intelligence (AI) and deep learning. Written for both beginners and seasoned professionals, this book delves into the foundational concepts of generative AI and deep learning architectures, including neural networks basics, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more.

The book starts with an overview of generative models, explaining their significance in generating new data samples and their various applications across industries. It covers popular generative models like autoencoders, restricted Boltzmann machines (RBMs), and deep belief networks (DBNs), providing insights into their workings and real-world use cases.

Moving beyond the basics, the book explores advanced topics in generative AI, such as reinforcement learning integration and its applications in natural language processing (NLP). Readers will learn about cutting-edge techniques like transformer models, including BERT and GPT, and how they revolutionize language understanding and generation tasks.

Throughout the book, ethical considerations and challenges in generative AI are highlighted, emphasizing the importance of fairness, transparency, and security in AI development. Real-world case studies showcase successful implementations of generative AI across diverse domains, from healthcare and finance to art and entertainment.

Practical guidance is provided on building and deploying generative models, including model training, evaluation, and optimization strategies. The book also explores popular tools and frameworks like TensorFlow, PyTorch, and OpenAI GPT, empowering readers to harness the full potential of generative AI technology.

With insights into emerging trends and future directions, "Generative AI and Deep Learning" offers a holistic view of the field, inspiring readers to explore new possibilities and contribute to the advancement of AI for the betterment of society. Whether you're a student, researcher, or industry professional, this book is your essential companion on the journey through the exciting world of generative AI and deep learning. Keywords: Generative AI, Deep Learning, Neural Networks, Autoencoders, Reinforcement Learning, Natural Language Processing, Ethics, Case Studies, Tools and Frameworks, Future Directions.

商品描述(中文翻譯)

《生成式人工智慧與深度學習:從基礎到進階應用》是一本全面的指南,探索了人工智慧(AI)和深度學習這一令人興奮的領域。這本書適合初學者和資深專業人士,深入探討生成式AI和深度學習架構的基礎概念,包括神經網絡基礎、卷積神經網絡(CNN)、遞迴神經網絡(RNN)等。

本書首先概述了生成模型,解釋了它們在生成新數據樣本中的重要性及其在各行各業的應用。書中涵蓋了流行的生成模型,如自編碼器、限制玻爾茲曼機(RBM)和深度信念網絡(DBN),並提供了它們的運作原理和實際應用案例的見解。

在基礎知識之上,本書探討了生成式AI的進階主題,如強化學習的整合及其在自然語言處理(NLP)中的應用。讀者將了解前沿技術,如變壓器模型,包括BERT和GPT,以及它們如何徹底改變語言理解和生成任務。

在整本書中,強調了生成式AI中的倫理考量和挑戰,突顯了公平性、透明度和安全性在AI發展中的重要性。真實案例研究展示了生成式AI在醫療、金融、藝術和娛樂等多個領域的成功實施。

本書提供了有關構建和部署生成模型的實用指導,包括模型訓練、評估和優化策略。書中還探討了流行的工具和框架,如TensorFlow、PyTorch和OpenAI GPT,幫助讀者充分發揮生成式AI技術的潛力。

《生成式人工智慧與深度學習》提供了對新興趨勢和未來方向的見解,為讀者提供了該領域的全景視角,激勵他們探索新可能性,並為社會的AI進步做出貢獻。無論你是學生、研究者還是業界專業人士,這本書都是你在生成式AI和深度學習這個令人興奮的世界中不可或缺的伴侶。關鍵詞:生成式AI、深度學習、神經網絡、自編碼器、強化學習、自然語言處理、倫理、案例研究、工具和框架、未來方向。