Evaluating Generative AI: Principles, Methods, and Applications

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-06-20
  • 售價: $900
  • 貴賓價: 9.5$855
  • 語言: 英文
  • 頁數: 130
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798328962872
  • ISBN-13: 9798328962872
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Evaluating Generative AI: Principles, Methods, and Applications" offers a comprehensive exploration of the critical aspects involved in assessing and leveraging generative AI technologies. Generative AI, a rapidly advancing field within artificial intelligence, focuses on machines' ability to autonomously generate content such as images, music, and text that mimics human creativity. This book serves as a guide for both practitioners and enthusiasts alike, providing an in-depth understanding of the foundational concepts, evaluation techniques, and real-world applications of generative AI.

The book begins by establishing the fundamental principles of generative AI, including the types of generative models such as GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders). It delves into essential techniques like data representation, training algorithms, and model architectures crucial for developing effective generative models.

Central to the book is the exploration of evaluation methods for generative AI, encompassing quantitative metrics like Inception Score and qualitative assessments such as human judgment studies and visual inspection. These methods are crucial for assessing the perceptual quality, statistical measures, and application-specific metrics of generated content.

Moreover, the book discusses advanced topics like bias and fairness in generative models, robustness against adversarial attacks, and the interpretability of AI-generated outputs. Case studies across diverse domains such as art, healthcare, finance, and entertainment highlight the practical applications and ethical considerations inherent in deploying generative AI solutions.

As generative AI continues to evolve, the book also explores emerging trends like hybrid models, few-shot learning, and real-time generative systems. It addresses challenges such as scalability, real-world validation, and interdisciplinary integration, paving the way for readers to grasp the future directions and opportunities in this dynamic field.

"Evaluating Generative AI" is designed to equip readers with practical knowledge, code examples, tutorials, and hands-on exercises to facilitate learning and application. Whether you're a researcher, developer, or decision-maker, this book provides a comprehensive guide to understanding, evaluating, and harnessing the transformative potential of generative AI.

商品描述(中文翻譯)

《評估生成式人工智慧:原則、方法與應用》提供了對評估和利用生成式人工智慧技術中關鍵方面的全面探索。生成式人工智慧是人工智慧中一個快速發展的領域,專注於機器自主生成模仿人類創造力的內容,如圖像、音樂和文本。本書作為實務工作者和愛好者的指南,提供了對生成式人工智慧的基礎概念、評估技術和實際應用的深入理解。

本書首先建立生成式人工智慧的基本原則,包括生成模型的類型,如GAN(生成對抗網絡)和VAE(變分自編碼器)。它深入探討了數據表示、訓練算法和模型架構等關鍵技術,這些技術對於開發有效的生成模型至關重要。

本書的核心是探索生成式人工智慧的評估方法,包括定量指標如Inception Score,以及定性評估如人類判斷研究和視覺檢查。這些方法對於評估生成內容的感知質量、統計指標和特定應用的指標至關重要。

此外,本書還討論了生成模型中的偏見和公平性、對抗攻擊的穩健性以及AI生成輸出的可解釋性等進階主題。來自藝術、醫療、金融和娛樂等多個領域的案例研究突顯了部署生成式人工智慧解決方案的實際應用和倫理考量。

隨著生成式人工智慧的持續演進,本書還探討了混合模型、少量學習和即時生成系統等新興趨勢。它解決了可擴展性、現實世界驗證和跨學科整合等挑戰,為讀者理解這一動態領域的未來方向和機會鋪平道路。

《評估生成式人工智慧》旨在為讀者提供實用知識、代碼範例、教程和實作練習,以促進學習和應用。無論您是研究者、開發者還是決策者,本書都提供了理解、評估和利用生成式人工智慧變革潛力的全面指南。