Practical Generative AI for Data Science: From Theory to Real-World Applications
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-06-20
- 售價: $900
- 貴賓價: 9.5 折 $855
- 語言: 英文
- 頁數: 148
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798328962698
- ISBN-13: 9798328962698
-
相關分類:
人工智慧、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Practical Generative AI for Data Science: From Theory to Real-World Applications" is a comprehensive guide that bridges the gap between theory and practical implementation of generative AI techniques in the field of data science. This book equips readers with essential knowledge and hands-on skills to effectively harness the power of generative models for diverse applications.
Starting with foundational concepts, the book introduces readers to various types of generative models, including Gaussian Mixture Models, Hidden Markov Models, Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, and more. Each model is explained with clear examples, use cases, and case studies drawn from industries such as finance, healthcare, and media.
The practical implementation section provides step-by-step tutorials and complete code solutions using popular frameworks like TensorFlow and PyTorch. Readers learn how to build and train models for tasks such as image generation, natural language processing (NLP), anomaly detection, and speech synthesis. Detailed explanations of model architectures, optimization techniques, and evaluation metrics ensure a deep understanding of each concept.
Furthermore, the book addresses advanced topics including conditional generative models, sequential generative models like RNNs and Transformers, energy-based models, and diffusion models. These chapters delve into cutting-edge research, emerging trends, and practical applications across various industries.
Ethical considerations and regulatory concerns associated with generative AI are also discussed, emphasizing the importance of fairness, transparency, and privacy in model development and deployment.
"Practical Generative AI for Data Science" is an indispensable resource for data scientists, machine learning engineers, and researchers looking to leverage generative AI for solving real-world problems. Whether you are new to generative models or seeking to deepen your expertise, this book provides the knowledge and tools needed to succeed in the rapidly evolving field of AI.
商品描述(中文翻譯)
《實用生成式人工智慧於數據科學:從理論到實際應用》是一本全面的指南,旨在彌合生成式人工智慧技術在數據科學領域的理論與實際應用之間的鴻溝。本書為讀者提供了必要的知識和實作技能,以有效利用生成模型的力量,應用於各種場景。
本書從基礎概念開始,介紹了各種生成模型,包括高斯混合模型、隱馬可夫模型、變分自編碼器(VAEs)、生成對抗網絡(GANs)、正規化流等。每種模型都配有清晰的範例、使用案例和來自金融、醫療和媒體等行業的案例研究。
實作部分提供了逐步的教程和完整的代碼解決方案,使用流行的框架如 TensorFlow 和 PyTorch。讀者將學習如何構建和訓練模型,以執行圖像生成、自然語言處理(NLP)、異常檢測和語音合成等任務。對模型架構、優化技術和評估指標的詳細解釋,確保讀者對每個概念有深入的理解。
此外,本書還探討了進階主題,包括條件生成模型、序列生成模型如 RNNs 和 Transformers、基於能量的模型以及擴散模型。這些章節深入探討前沿研究、新興趨勢和各行各業的實際應用。
本書還討論了與生成式人工智慧相關的倫理考量和監管問題,強調在模型開發和部署中公平性、透明性和隱私的重要性。
《實用生成式人工智慧於數據科學》是數據科學家、機器學習工程師和研究人員不可或缺的資源,幫助他們利用生成式人工智慧解決現實世界的問題。無論您是生成模型的新手,還是希望深化專業知識,本書都提供了在快速發展的人工智慧領域中成功所需的知識和工具。