數學的故鄉

王懷權

  • 出版商: 國立清華大學出版社
  • 出版日期: 2017-02-22
  • 定價: $650
  • 售價: 9.0$585
  • 語言: 繁體中文
  • 頁數: 464
  • ISBN: 986611662X
  • ISBN-13: 9789866116629
  • 下單後立即進貨 (約5~7天)

相關主題

商品描述

  瞭解數學的過去和現在,可做為數學將來的預見。近代數學發展神速又很抽象,想了解其生長的形態和變化的方向,較有效的方法是研究數學的發展史。

  幾何學發展史,縱論幾何的起源、發展、全盛和革新。不管是因為求知的天賦或是生活的需要,人類生俱有形狀和多少的概念。形狀和多少的概念孕育著數學。古希臘時期西元前600年至西元300年,地不大人不多,但是英雄紛起,豪傑遍地,數學優於其他一切。生產是奴隸的事情,所有的智識份子,一流高手,都來做數學。數學出盡了風頭,真所謂天下英雄儘在此。幾何經原始人類孕育的形狀概念,經希臘的壯大,一直到20世紀的枝盛葉茂,真是光芒萬丈,五彩繽紛。

  另一方面多少的概念,孕育著代數,不像幾何凝集一處,代數是隨風飄散,散落於世界各個角落;如中國、印度、巴比倫、希臘和及等地。就像春天的紫羅蘭到處開放。各處的人們雖然海天相隔,卻似心有靈犀一點通,殊途同歸。代數真是欣欣向榮。

  到了17世紀,形狀和多少的概念,經笛卡兒融會貫通,在平面上劃了兩條垂直線,創造了解析幾何。從此代數和幾何(即多少和形狀)互通有無,相映成輝。解析幾何引進函數概念。事實上,形狀和多少概念是經過許多人,經過許多百年的努力,得到許多概念。然後出來一個人,將前人努力的成果,融會貫通,過濾出有價值的概念,依此創新,形成一偉大的局面,造成巨大的衝擊,得一威力無窮的新天地:微積分。這個人就是牛頓。微積分為分析開路,接著微分方程、複變數函數論、微分幾何、實變數函數論和富氏分析等一一降臨人間。

  本書選取具有代表性和啟發性題材,以記事式編寫,分幾何學的故鄉,代數學的故鄉和分析學的故鄉三部分。

作者簡介

王懷權

  主要學歷
  國立臺灣師範大學數學學士(1964年)。
  國立清華大學數學碩士(1966年)。
  美國愛宿華大學數學博士(1971年)。

  經歷
  國立清華大學教授(1974-2004年)。
  國立清華大學數學系系主任(1975-1977年)。
  中華民國數學會理事長(1991-1995年)。
  玄獎大學講座教授兼應用數學系系主任(2004-2008年)。

  著作
  Homogeneous Banach Algebras, Lecture Notes in Pure and Applied Mathematics, No.29, Marcel Dekker, Inc. New York, U.S.A.(1977年)。
  Nonlinear Analysis, National Tsing Hua University Press, Hsinchu, Taiwan, (2003年)。
  數學的故鄉,成信文化事業股份有限公司出版,臺灣台北(2004年)。
  Palais-Smale Approaches to Semilinear Elliptic Equations in Unbounded  Domains, Electron. J. Diff. Eqns., Monograph 06,(2004年)。

  榮譽
  與國立清華大學化學系賴昭正教授組隊參加國立清華大學教職員橋牌賽,獲得第一名,由橋牌國手沈君山院長頒予獎牌(1982年)。
  獲得1986年度中山學術著作獎,由李遠哲院長於國立清華大學月涵堂頒發榮譽校友獎狀。
  國科會甲種獎(1971-2008年)。
  國科會優等獎(1994年)。
  國立清華大學傑出教學獎暨教育部教學特優教師(1994年)。
  國立清華大學傑出教學獎(2003年)。
  中華民國數學會學會獎(2003年)。
  清華大學理學院40周年代表數學系演講(2014年)。

目錄大綱

1    幾何的發源地1
1.1    幾何的發源地  1
1.2    本章心得    5

2    古希臘的幾何6
2.1     畢達格拉斯年代 6
2.2    黃金年代14
2.3     柏拉圖年代17
2.4     亞歷山大年代24
2.5    衰敗年代33
2.6    本章心得44

3    解析幾何49
3.1     費馬50
3.2     笛卡爾52
3.3    解析幾何的重要性57
3.4    本章心得58

4    射影幾何61
4.1     笛沙格62
4.2     巴斯卡與拉海爾63
4.3    十九世紀的射影幾何66
4.4    本章心得66

5    非歐幾何69
5.1    非歐幾何的演進70
5.2    非歐幾何的誕生71
5.3     高斯73
5.4    本章心得77

6    微分幾何79
6.1    古典的微分幾何80
6.2     高斯與微分幾何82
6.3     黎曼與微分幾何84
6.4     嘉當、楊振寧、陳省身和丘成桐88
6.5    微分幾何應用大師愛因斯坦91
6.6    本章心得95

7    幾何基礎100
7.1    歐氏幾何的缺陷100
7.2    幾何的統一101
7.3    歐氏幾何的公理化102
7.4     德國希爾伯特104
7.5     法國龐加萊105
7.6    古今大問題108
7.7    本章心得112

8    命數法115
8.1     巴比倫命數法121
8.2     埃及命數法122
8.3     希臘命數法126
8.4     羅馬命數法127
8.5     馬雅命數法128
8.6     中國命數法129
8.7     印度-阿拉伯命數法131
8.8    本章心得132

9    計算法134
9.1    為什麼要計算134
9.2    算盤135
9.3    手指算法與算籌138
9.4    乘法、除法與分數140
9.5    運算符號與消 9 驗算法145
9.6     納皮爾尺桿147
9.7     巴斯卡數輪機與萊佈尼茲數輪機147
9.8    差異計算機148
9.9    電子製表機與哈佛馬克 I 150
9.10  圖靈機、ENIAC 和 IAS 152
9.11  本章心得156

10 數論158
10.1  畢氏三元數158
10.2  圖形數162
10.3  友誼數、完全數、虧數和盈數166
10.4  梅森數170
10.5  質數與合成數170
10.6  歐幾里得輾轉相除法174
10.7  斐波那契數列77
10.8  費馬大定理與費馬小定理178
10.9  歐幾里得巨著「幾何原本」之數論181
10.10同餘式182
10.11魔方陣187
10.12代數數與超越數190
10.13解析數論193
10.14本章心得193

11 代數學195
11.1  代數200
11.2  二項式定理202
11.3  方程式論204
11.4  四元體211
11.5  行列式與矩陣213
11.6  布爾代數217
11.7  虛數 √−1 的故事220
11.8  從西元 500 年到西元 1600 年的歐洲代數222
11.9  本章心得224

12 抽象代數226
12.1  群論227
12.2  環與其理想230
12.3  體論235
12.4  本章心得243

13 微積分244
13.1  微積分的問題244
13.2  通世數學家牛頓與大數學家萊佈尼茲250
13.3  數學大師歐拉258
13.4  函數的概念260
13.5  積分技巧262
13.6  橢圓積分264
13.7  Γ− 函數265
13.8  本章心得267

14 無窮級數269
14.1  函數的級數展開269
14.2  無窮級數的篳路藍縷,以啟山林273
14.3  三角級數與傅立葉級數278
14.4  本章心得283

15 微分方程285
15.1  一階微分方程285
15.2  奇異解293
15.3  二階微分方程294
15.4  數學家拉格朗日和拉普拉斯301
15.5  本章心得305

16 偏微分方程306
16.1  重要定律與定理306
16.2  一階偏微分方程310
16.3  波方程312
16.4  擴散方程320
16.5  位勢論324
16.6  本章心得332

17 變分法333
17.1  函數空間與重要不等式333
17.2  歐拉−拉格朗日方程339
17.3  最速降線問題341
17.4  測地線問題343
17.5  等周長問題344
17.6  最小旋轉面問題345
17.7  費馬光曲線347
17.8  狄利克雷原則348
17.9  本章心得351

18 複變數函數論354
18.1  複數平面354
18.2  複數的幾何表法355
18.3  柯西−黎曼方程357
18.4  ln z 為多值函數359
18.5  可微函數與解析函數361
18.6  留數366
18.7  本章心得367

19 逐漸嚴格的分析369
19.1  函數的極限與連續369
19.2  函數的導來數373
19.3  黎曼積分375
19.4  無窮級數的收斂和發散380
19.5  本章心得383

20 實變數函數論384
20.1  n 維歐式空間384
20.2  黎曼−斯蒂爾吉斯積分386
20.3  容度與波萊爾測度387
20.4  勒貝格的生平388
20.5  勒貝格積分389
20.6  李特爾伍德三原則395
20.7  黎曼積分與勒貝格積分395
20.8  黎曼−斯蒂爾吉斯積分與勒貝格積分399
20.9  本章心得401