Adversary-Aware Learning Techniques and Trends in Cybersecurity
Dasgupta, Prithviraj, Collins, Joseph B., Mittu, Ranjeev
相關主題
商品描述
Part I: Game-Playing AI and Game Theory-based Techniques for Cyber Defenses
Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning
Joseph B Collins and Prithviraj Dasgupta
Security of Distributed Machine Learning: A Game-Theoretic Approach to Design Secure DSVM
Rui Zhang and Quanyan Zhu
Be Careful When Learning Against Adversaries: Imitative Attacker Deception in Stackelberg Security Games
Haifeng Xu and Thanh H. Nguyen
Part II: Data Modalities and Distributed Architectures for Countering Adversarial Cyber Attacks
Adversarial Machine Learning in Text: A Case Study of Phishing Email Detection with RCNN model
Daniel Lee and Rakesh M. Verma
Overview of GANs for Image Synthesis and Detection Methods
Eric Tjon, Melody Moh and Teng-Sheng Moh
Robust Machine Learning using Diversity and Blockchain
Raj Mani Shukla, Shahriar Badsha, Deepak Tosh, and Shamik Sengupta
Part III: Human Machine Interactions and Roles in Automated Cyber Defenses
Automating the Investigation of Sophisticated Cyber Threats with Cognitive Agents
Steven Meckl, Gheorghe Tecuci, Dorin Marcu and Mihai Boicu
Integrating Human Reasoning and Machine Learning to Classify Cyber Attacks
Ying Zhao and Lauren Jones
Homology as an Adversarial Attack Indicator
Ira S. Moskowitz, Nolan Bay, Brian Jalaian and Arnold Tunick
Cyber-(in)security, revisited: Proactive Cyber-defenses, Interdependence and Autonomous Human Machine Teams (A-HMTs)
William Lawless, Ranjeev Mittu, Ira Moskowitz, Donald Sofge and Stephen Russell