Deploying LLMs: Strategies, Case Studies, and Future Trends

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-07-20
  • 售價: $770
  • 貴賓價: 9.5$732
  • 語言: 英文
  • 頁數: 84
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798333634412
  • ISBN-13: 9798333634412
  • 相關分類: LangChain
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Deploying LLMs: Strategies, Case Studies, and Future Trends is a comprehensive resource for understanding and implementing large language models (LLMs) in various industries. This book provides a detailed exploration of the entire lifecycle of LLM deployment, from foundational concepts to advanced strategies.

The book begins with an introduction to LLMs, covering their evolution, key use cases, benefits, and the fundamental principles of model deployment. It then delves into the preparation phase, focusing on infrastructure setup, data management, and model optimization techniques. Readers will gain insights into choosing the right infrastructure, setting up compute resources, and employing strategies like model pruning and transfer learning to enhance performance.

The deployment strategies section addresses both batch and real-time inference, and provides guidance on using popular deployment frameworks such as TensorFlow Serving and Docker, as well as orchestration with Kubernetes. It also covers creating and managing APIs, securing endpoints, and scaling to handle varying loads.

Monitoring and maintenance are critical aspects of LLM deployment, and the book offers practical advice on tracking performance metrics, setting up CI/CD pipelines, and automating retraining processes. The book also emphasizes the importance of cost management, exploring ways to optimize deployment costs, use cloud cost management tools, and implement strategies for budgeting and forecasting.

Security and compliance are crucial in deploying LLMs, and the book provides guidance on data encryption, securing model access, and adhering to regulations like GDPR and CCPA. Ethical considerations, including bias mitigation and ensuring fairness, are also thoroughly discussed.

Case studies illustrate real-world applications of LLMs in healthcare, finance, and entertainment, providing readers with practical examples of deployment successes. Hands-on projects offer practical experience in building scalable chatbots, deploying text summarization services, and creating real-time translation APIs.

The book concludes with a look at future trends in LLM deployment, including advances in technology, model optimization, and predictions for industry impact, providing a forward-looking perspective on the evolving landscape of LLMs.

商品描述(中文翻譯)

《部署大型語言模型:策略、案例研究與未來趨勢》是一本全面的資源,旨在幫助讀者理解和實施大型語言模型(LLMs)於各行各業。本書詳細探討了LLM部署的整個生命周期,從基礎概念到進階策略。

本書首先介紹了LLM,涵蓋其演變、主要應用案例、優勢以及模型部署的基本原則。接著深入準備階段,重點在於基礎設施設置、數據管理和模型優化技術。讀者將獲得選擇合適基礎設施、設置計算資源以及運用模型修剪和遷移學習等策略以提升性能的見解。

部署策略部分涵蓋批次和即時推論,並提供使用流行部署框架如TensorFlow Serving和Docker的指導,以及與Kubernetes的協調。它還涉及創建和管理API、保護端點以及擴展以應對不同負載的內容。

監控和維護是LLM部署的關鍵方面,本書提供了有關追蹤性能指標、設置CI/CD管道和自動化再訓練過程的實用建議。本書還強調成本管理的重要性,探討優化部署成本、使用雲端成本管理工具以及實施預算和預測策略的方法。

安全性和合規性在部署LLM時至關重要,本書提供了有關數據加密、保護模型訪問以及遵循GDPR和CCPA等法規的指導。倫理考量,包括偏見緩解和確保公平性,也得到了充分討論。

案例研究展示了LLM在醫療、金融和娛樂等領域的實際應用,為讀者提供了部署成功的實際範例。實作專案則提供了構建可擴展聊天機器人、部署文本摘要服務和創建即時翻譯API的實踐經驗。

本書最後展望了LLM部署的未來趨勢,包括技術進步、模型優化以及對行業影響的預測,為讀者提供了對不斷演變的LLM領域的前瞻性視角。