Mastering Fine-Tuning with LLMs: From Basics to Advanced Techniques
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-07-24
- 售價: $670
- 貴賓價: 9.5 折 $637
- 語言: 英文
- 頁數: 96
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798334013476
- ISBN-13: 9798334013476
-
相關分類:
LangChain
海外代購書籍(需單獨結帳)
相關主題
商品描述
Mastering Fine-Tuning with LLMs: From Basics to Advanced Techniques" provides a comprehensive guide to optimizing large language models (LLMs) for various applications. This book is designed for data scientists, machine learning engineers, and AI enthusiasts who want to harness the power of fine-tuning to enhance LLMs' performance and adapt them to specific tasks.
The book is structured into eight parts, each focusing on different aspects of fine-tuning LLMs. It begins with an introduction to large language models, including their evolution, key concepts, and applications such as natural language understanding, text generation, and conversational AI.
Part II delves into the fundamentals of fine-tuning, covering essential topics like data preparation, setting up the fine-tuning environment, and understanding the differences between pre-training and fine-tuning.
In Part III, the book explores various fine-tuning techniques, including supervised, unsupervised, and self-supervised learning, along with transfer learning and domain adaptation. It provides step-by-step guides and case studies to illustrate how these techniques can be applied in real-world scenarios.
Part IV focuses on advanced fine-tuning strategies, such as hyperparameter tuning, handling imbalanced and limited data, and optimizing training performance. It offers practical advice on managing computational resources and improving efficiency.
Part V addresses evaluating and validating fine-tuned models, discussing evaluation metrics, validation techniques, and error analysis to ensure model reliability and performance.
Part VI covers deployment and maintenance, including strategies for deploying models in production, monitoring performance, and updating models to adapt to new data.
In Part VII, the book delves into ethical considerations and cost management, emphasizing the importance of fairness, transparency, and cost-effective practices in AI development.
Finally, Part VIII presents hands-on projects and case studies, allowing readers to apply their knowledge in practical scenarios. The book concludes with a look at future trends in LLM fine-tuning and the evolving role of LLMs in AI.
商品描述(中文翻譯)
《掌握 LLM 的微調:從基礎到進階技術》提供了一本全面的指南,旨在優化大型語言模型(LLMs)以應用於各種場景。本書專為數據科學家、機器學習工程師和 AI 愛好者設計,幫助他們利用微調的力量來提升 LLM 的性能並使其適應特定任務。
本書分為八個部分,每個部分專注於微調 LLM 的不同方面。首先介紹大型語言模型,包括其演變、關鍵概念以及應用,如自然語言理解、文本生成和對話式 AI。
第二部分深入探討微調的基本原則,涵蓋數據準備、設置微調環境以及理解預訓練與微調之間的差異等重要主題。
在第三部分中,本書探討各種微調技術,包括監督式、非監督式和自我監督學習,以及轉移學習和領域適應。它提供逐步指南和案例研究,說明這些技術如何應用於現實場景。
第四部分專注於進階微調策略,如超參數調整、處理不平衡和有限數據,以及優化訓練性能。它提供有關管理計算資源和提高效率的實用建議。
第五部分討論評估和驗證微調模型,探討評估指標、驗證技術和錯誤分析,以確保模型的可靠性和性能。
第六部分涵蓋部署和維護,包括在生產環境中部署模型的策略、監控性能以及更新模型以適應新數據。
在第七部分中,本書深入探討倫理考量和成本管理,強調公平性、透明度和成本效益實踐在 AI 開發中的重要性。
最後,第八部分呈現實作專案和案例研究,讓讀者能在實際場景中應用所學知識。本書以展望 LLM 微調的未來趨勢和 LLM 在 AI 中不斷演變的角色作結。