Mastering Generative AI in the Software Development Life Cycle

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-06-01
  • 售價: $870
  • 貴賓價: 9.5$827
  • 語言: 英文
  • 頁數: 86
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798327263611
  • ISBN-13: 9798327263611
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

**Mastering Generative AI in the Software Development Life Cycle** explores the transformative potential of generative AI in modern software development. This comprehensive guide walks readers through integrating AI technologies across each phase of the Software Development Life Cycle (SDLC), from requirements gathering and system design to implementation, testing, deployment, and maintenance.

The book begins with an overview of generative AI, explaining its core concepts, historical development, and diverse applications. It underscores the importance of the SDLC, contrasting traditional and agile methodologies, and addressing contemporary challenges in software development.

In the system design phase, readers learn how AI can automate architectural design, create rapid prototypes, and optimize resource allocation. The implementation chapter highlights AI-assisted code generation, presenting best practices for ensuring the quality and maintainability of AI-generated code. Version control and collaboration tools are also discussed to streamline the development process.

Testing is revolutionized through AI-driven automated test case generation, bug detection, and continuous integration and deployment (CI/CD). Real-world examples illustrate how AI can enhance efficiency and accuracy in these critical activities.

The deployment chapter delves into AI for deployment optimization, including predictive analysis, automated rollbacks, and resource management. It also covers AI-powered monitoring and maintenance, with techniques for anomaly detection, predictive maintenance, and automated scaling.

Maintenance and evolution are addressed with a focus on predictive maintenance using AI, adapting AI models to changing requirements, and exploring future trends like self-healing systems and advanced predictive analytics. Ethical and legal considerations, such as bias mitigation, transparency, accountability, and compliance with regulations like GDPR and HIPAA, are thoroughly examined.

Industry case studies demonstrate AI's impact on various sectors, including finance, healthcare, and e-commerce. These examples show how AI enhances fraud detection, disease prediction, personalized recommendations, and more.

The book also provides an overview of essential AI tools and technologies, offering guidance on integrating them into SDLC pipelines. It concludes with insights into emerging trends and the future of AI in software development, preparing readers for the evolving landscape of AI-driven development.

**Mastering Generative AI in the Software Development Life Cycle** is an essential resource for developers, engineers, and tech enthusiasts aiming to harness AI's power to innovate and optimize their software development processes.

商品描述(中文翻譯)

**掌握生成式人工智慧於軟體開發生命週期** 探討了生成式人工智慧在現代軟體開發中的變革潛力。這本全面的指南引導讀者在軟體開發生命週期 (SDLC) 的每個階段整合人工智慧技術,從需求收集和系統設計到實作、測試、部署和維護。

本書首先概述了生成式人工智慧,解釋其核心概念、歷史發展及多樣化應用。它強調了 SDLC 的重要性,對比傳統與敏捷方法論,並針對當前軟體開發中的挑戰進行探討。

在系統設計階段,讀者將學習如何利用人工智慧自動化架構設計、創建快速原型及優化資源配置。實作章節強調了人工智慧輔助的程式碼生成,並提出確保 AI 生成程式碼質量和可維護性的最佳實踐。版本控制和協作工具的討論也旨在簡化開發過程。

測試方面,透過 AI 驅動的自動化測試案例生成、錯誤檢測及持續整合與部署 (CI/CD) 進行了革命性的改變。實際案例展示了人工智慧如何提升這些關鍵活動的效率和準確性。

部署章節深入探討了用於部署優化的人工智慧,包括預測分析、自動回滾和資源管理。它還涵蓋了 AI 驅動的監控和維護,提供異常檢測、預測性維護和自動擴展的技術。

維護和演進方面,重點在於利用人工智慧進行預測性維護,調整 AI 模型以適應變化的需求,並探索未來趨勢,如自我修復系統和先進的預測分析。倫理和法律考量,如偏見緩解、透明度、問責制及遵循 GDPR 和 HIPAA 等法規,均受到深入檢視。

行業案例研究展示了人工智慧對各個領域的影響,包括金融、醫療保健和電子商務。這些例子顯示了人工智慧如何增強詐騙檢測、疾病預測、個性化推薦等功能。

本書還提供了關鍵 AI 工具和技術的概述,並提供將其整合進 SDLC 流程的指導。最後,書中對新興趨勢和人工智慧在軟體開發未來的展望進行了深入探討,幫助讀者為 AI 驅動的開發環境做好準備。

**掌握生成式人工智慧於軟體開發生命週期** 是一個對於開發者、工程師和科技愛好者而言,旨在利用人工智慧的力量來創新和優化其軟體開發流程的重要資源。