Mastering Generative AI with PyTorch: From Fundamentals to Advanced Models

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-05-31
  • 售價: $760
  • 貴賓價: 9.5$722
  • 語言: 英文
  • 頁數: 78
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798327167698
  • ISBN-13: 9798327167698
  • 相關分類: DeepLearning人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

**Mastering Generative AI with PyTorch: From Fundamentals to Advanced Models**

Unlock the potential of generative artificial intelligence with "Mastering Generative AI with PyTorch." This comprehensive guide takes you on a journey from the foundational concepts of generative AI to the implementation of advanced models, providing a clear and practical roadmap for mastering this cutting-edge technology.

The book begins with an introduction to the core principles of generative AI, explaining its significance and applications in various fields such as art, entertainment, and scientific research. You will explore different types of generative models, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Autoregressive Models, gaining a deep understanding of their architectures and mechanisms.

With a focus on hands-on learning, the book introduces you to PyTorch, one of the most popular and powerful deep learning frameworks. Step-by-step instructions guide you through the installation of PyTorch and fundamental operations, setting a strong foundation for building complex models. Each chapter is designed to build on the previous one, gradually increasing in complexity and depth.

In the GANs section, you will learn about their architecture, training process, and advanced variations like Conditional GANs and CycleGANs. The book provides detailed code examples and explanations, enabling you to implement and train your own GANs for diverse applications.

The VAE section delves into the mathematical foundations and training techniques of VAEs, including practical examples of implementing both standard and conditional VAEs with PyTorch. You'll gain insights into how VAEs can generate high-quality, realistic data and their use in creative and scientific tasks.

Autoregressive models, including PixelCNN and PixelRNN, are thoroughly covered, with explanations of their applications in sequential data generation. The book also explores the integration of attention mechanisms and transformers to enhance model performance.

By the end of this book, you will have a solid understanding of generative AI and be equipped with the skills to implement and experiment with various generative models using PyTorch. Whether you are a beginner or an experienced practitioner, "Mastering Generative AI with PyTorch" provides the knowledge and tools needed to excel in the exciting field of generative AI.

商品描述(中文翻譯)

**掌握生成式人工智慧與 PyTorch:從基礎到進階模型**

解鎖生成式人工智慧的潛力,請參閱《掌握生成式人工智慧與 PyTorch》。這本全面的指南將帶您從生成式人工智慧的基本概念出發,深入到進階模型的實作,提供一條清晰且實用的路線圖,幫助您掌握這項尖端技術。

本書首先介紹生成式人工智慧的核心原則,解釋其在藝術、娛樂和科學研究等各個領域的重要性和應用。您將探索不同類型的生成模型,包括生成對抗網路(GANs)、變分自編碼器(VAEs)和自回歸模型,深入了解它們的架構和機制。

本書著重於實作學習,向您介紹 PyTorch,這是最受歡迎且強大的深度學習框架之一。逐步的指導將引導您完成 PyTorch 的安裝和基本操作,為構建複雜模型奠定堅實的基礎。每一章都旨在建立在前一章的基礎上,逐漸增加複雜性和深度。

在 GANs 章節中,您將學習其架構、訓練過程以及條件 GANs 和 CycleGANs 等進階變體。本書提供詳細的程式碼範例和解釋,使您能夠實作和訓練自己的 GANs,以應用於各種場景。

VAE 章節深入探討 VAE 的數學基礎和訓練技術,包括使用 PyTorch 實作標準和條件 VAE 的實用範例。您將獲得有關 VAE 如何生成高品質、真實數據的見解,以及它們在創意和科學任務中的應用。

自回歸模型,包括 PixelCNN 和 PixelRNN,將被徹底介紹,並解釋其在序列數據生成中的應用。本書還探討了注意力機制和變壓器的整合,以提升模型性能。

在本書結束時,您將對生成式人工智慧有堅實的理解,並具備使用 PyTorch 實作和實驗各種生成模型的技能。無論您是初學者還是經驗豐富的從業者,《掌握生成式人工智慧與 PyTorch》都提供了在這個令人興奮的生成式人工智慧領域中脫穎而出的知識和工具。