統計至簡 (概率統計全彩圖解 + 微課 + Python 編程)
薑偉生
- 出版商: 清華大學
- 出版日期: 2023-10-01
- 定價: $1,548
- 售價: 7.9 折 $1,223
- 語言: 簡體中文
- 頁數: 600
- 裝訂: 平裝
- ISBN: 7302643563
- ISBN-13: 9787302643562
-
相關分類:
機率統計學 Probability-and-statistics、Python
-
相關翻譯:
AI 時代 Math 元年 - 用 Python 全精通統計及機率 (黑白印刷) (繁中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
Python GUI 程式設計:PyQt5 實戰$690$538 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
$959AI 芯片:前沿技術與創新未來 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
跟著 Docker 隊長,修練 22天就精通 - 搭配 20小時作者線上教學,無縫接軌 Microservices、Cloud-native、Serverless、DevOps 開發架構$880$695 -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537 -
Keras 大神歸位:深度學習全面進化!用 Python 實作 CNN、RNN、GRU、LSTM、GAN、VAE、Transformer$1,200$1,020 -
$708深入理解 Linux 網絡: 修煉底層內功,掌握高性能原理 -
PID 控制系統設計 — 使用 MATLAB 和 Simulink 模擬與分析$534$507 -
$1,548矩陣力量 (線性代數全彩圖解 + 微課 + Python 編程) -
$1,428數學要素 (全彩圖解 + 微課 + Python 編程) -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748 -
邊緣AI|使用嵌入式機器學習解決真實世界的問題 (AI at the Edge: Solving Real-World Problems with Embedded Machine Learning)$880$695 -
汽車電子硬件設計$894$849 -
馬同學圖解微積分 (上)$834$792 -
Generative AI - Diffusion Model 擴散模型現場實作精解$720$569 -
$1,608編程不難 (全彩圖解 + 微課 + Python 編程) -
$1,223可視之美 (數據可視化 + 數學藝術 + 學術繪圖 + Python 創意編程) -
線性代數與數據學習$828$787 -
$1,128機器學習 (全彩圖解 + 微課 + Python編程) -
$908馬同學圖解微積分 (下) -
$939深入理解Linux進程與內存:修煉底層內功,掌握高性能原理 -
$1,128數據有道 (數據分析 + 圖論與網絡 + 微課 + Python 編程) -
$422大模型動力引擎 — PyTorch 性能與顯存優化手冊
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
VIP 95折
深度學習:基礎與概念$1,128$1,072 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
數據科學和機器學習已經深度融合到我們生活的方方面面,而數學正是開啟未來大門的鑰匙。
不是所有人生來都握有一副好牌,但是掌握“數學+編程+機器學習”的知識絕對是王牌。
這一次,學習數學不再是為了考試、分數、升學,而是投資時間、自我實現、面向未來。
為了讓大家學數學、用數學,甚至愛上數學,在創作時,作者盡量剋服傳統數學教材的各種弊端,
讓大家學習時有興趣、看得懂、有思考、更自信、用得著。
《統計至簡:概率統計全彩圖解+微課+Python編程》是“鳶尾花數學大系—從加減乘除到機器學習”
叢書中數學版塊—“數學三劍客”的第三冊,也是最後一本。
“數學”板塊的第一本《數學要素》是各種數學工具的“大雜燴”,可謂數學基礎;《矩陣力量》專門講解機器學習中常用的線性代數工具;
本冊《統計至簡》則介紹機器學習和數據分析中常用的概率統計工具。
《統計至簡:概率統計全彩圖+微課+Python編程》的核心是“多元統計”,離不開第二冊《矩陣力量》中介紹的線性代數工具。
本書內容又可以歸納為7大板塊——統計、概率、高斯、隨機、頻率派、貝葉斯派、橢圓。
本書在講解概率統計工具時,會穿插介紹其在數據科學和機器學習領域的應用場景,讓大家學以致用。
《統計至簡:概率統計全彩圖解+微課+Python編程》讀者群包括所有在工作中應用概率統計的朋友,
尤其適用於初級程序員進階、大學本科數學開竅、高級數據分析師、機器學習開發者。
作者簡介
薑偉生,博士,勤奮的小鎮做題家,熱愛知識可視化和開源分享。自2022年8月開始,在GitHub上開源“鳶尾花書”學習資源,截至2023年5月,已經分享3000多頁PDF、3000多幅矢量圖、約1000個代碼文件,全球讀者數以萬計
目錄大綱
緒論
第1板塊統計
第1章機率統計全景
1.1 必備數學工具:一個線性代數小測驗
1.2 統計描述
1.3 機率
1.4 高斯
1.5 隨機
1.6 頻率派
1.7 貝葉斯派
1.8 橢圓三部曲
第2章統計描述
2.1統計兩大工具:描述、推論
2.2 直方圖:單一特徵資料分佈
2.3 散佈圖:兩特徵資料分佈
2.4 有標籤資料的統計視覺化
2.5 集中度:平均值、質心
2.6 分散度:極差、變異數、標準差
2.7 分位:四分位、百分位等
2.8 箱型圖:小提琴圖、分佈散佈圖
2.9 中心距:平均值、變異數、偏態、峰度
2.10 多元隨機變量關係:協方差矩陣、相關係數矩陣
第2板塊機率
第3章古典機率模型
3.1 無所不在的機率
3.2 古典機率:離散均勻機率律
3.3 回顧:楊輝三角與機率
3.4 事件之間的關係:集合運算
3.5 條件機率:給定部分資訊做推論
3.6 貝氏定理:條件機率、邊緣機率、聯合機率關係
3.7 全機率定理:窮舉法
3.8 獨立、互斥、條件獨立
第4章離散隨機變量
4.1 隨機:天地不仁,以萬物為芻狗
4.2期望值:隨機變量的可能取值加權平均
4.3 變異數:隨機變量離期望距離平方的平均值
4.4 累積分佈函數(CDF):累加
4.5 二元離散隨機變量
4.6 協方差、相關係數
4.7 邊緣機率:偏求和,相當於降維
4.8 條件機率:引入貝葉斯定理
4.9 獨立性:條件機率等於邊緣機率
4.10 以鳶尾花資料為例:不考慮分類標籤
4.11 以鳶尾花資料為例:考慮分類標籤
4.12 再談機率1:展開、折疊
第5章離散分佈
5.1 機率分佈:高度理想化的數學模型
5.2 離散均勻分佈:不分厚薄
5.3 伯努利分佈:非黑即白
5.4 二項分佈:楊輝三角
5.5 多項分佈:二項分佈推廣
5.6 泊松分佈:建模隨機事件的發生次數
5.7 幾何分佈:滴水穿石
5.8 超幾何分佈:不放回
第6章連續隨機變量
6.1 一元連續隨機變量
6.2 期望、變異數和標準差
…
第3板塊高斯
第4板塊隨機
第5板塊頻率派
第6板塊貝葉斯派
第7板塊橢圓
