貝葉斯推理與機器學習 Bayesian Reasoning and Machine Learning
David Barber 譯者 徐增林
- 出版商: 機械工業
- 出版日期: 2023-10-19
- 定價: $1,194
- 售價: 8.5 折 $1,015
- 語言: 簡體中文
- 頁數: 612
- 裝訂: 平裝
- ISBN: 7111732960
- ISBN-13: 9787111732969
-
相關分類:
Machine Learning
- 此書翻譯自: Bayesian Reasoning and Machine Learning
立即出貨
買這商品的人也買了...
-
$352R 語言編程藝術 (The Art of R Programming: A Tour of Statistical Software Design) -
Fundamentals of Massive MIMO (Hardcover)$3,710$3,525 -
$1,663Grokking Deep Learning (Paperback) -
$301深度學習:R語言實踐指南 (Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R) -
$354神經網絡:R語言實現 -
數學之美, 3/e$414$393 -
線性代數應該這樣學, 3/e$419$398 -
泛函分析 (原書第2版‧典藏版)$474$450 -
$709應用線性代數 -
優美的數學思維:問題求解與證明, 2/e (Mathematical Thinking: Problem-Solving and Proofs, 2/e)$834$792 -
$9005G 技術核心與增強:從 R15 到 R16 -
機器學習實戰:使用 R、tidyverse 和 mlr$708$673 -
$1,423機器學習:貝葉斯和優化方法, 2/e (Machine Learning : A Bayesian and Optimization Perspective, 2/e) -
$403深度學習(R語言版) -
$403貝葉斯算法與機器學習 -
機器學習公式詳解, 2/e$539$512 -
$403因果推斷導論 -
貝葉斯數據分析, 2/e (Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2/e)$1,199$1,139 -
$908馬同學圖解微積分 (下)
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
VIP 95折
深度學習:基礎與概念$1,128$1,072 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
本書全面介紹貝葉斯推理與機器學習,涉及基本概念、理論推導與直覺解釋,
涵蓋各種實用的機器學習演算法,包括樸素貝葉斯、高斯模型、馬可夫模型、線性動態系統等。
在介紹方法的同時,強調機率層面的理論支持,
可幫助讀者加強對機器學習本質的認識,其適合想要學習機器學習中的機率方法的讀者。
首先介紹機率論和圖的基礎概念,然後以圖模型為切入點,用一個統一的框架來講解從基本推論到高階演算法的知識。
不僅附有BRMLI具箱,而且提供大量MATLAB程式碼實例,
將機率模型與程式設計實踐結合,從而幫助讀者更好地理解模型方法。
作者簡介
徐增林,哈爾濱工業大學(深圳)教授,博士生導師,曾在香港中文大學、密西根州立大學、馬克斯普朗克計算機研究所、普度大學、電子科技大學等單位從事科研工作。主要研究方向為機器學習及應用,在人工智能領域發表一百多篇國際會議和期刊論文,發表專著一部,任國際神經網絡學會成都學會主席,擔任Neural Networks、Neurocomputing等期刊編委。獲國際神經網絡學會青年研究者獎,獲國家、四川省、深圳市等高層次人才稱號。
目錄大綱
譯者序
前言
符號表
BRML工具箱
第一部分 機率模型中的推斷
第1章 機率推理
1.1 機率知識複習
1.1.1 條件機率
1.1.2 機率表
1.2 機率推理
1.3 先驗、似然與後驗
1.3.1 兩枚骰子:各自的分數是多少
1.4 總結
1.5 代碼
1.5.1 基礎機率代碼
1.5.2 通用工具
1.5.3 範例
1.6 練習題
第2章 圖的基礎概念
2.1 圖
2.2 圖的數值表示
2.2.1 邊表
2.2.2 鄰接矩陣
2.2.3 團矩陣
2.3 總結
2.4 代碼
2.4.1 實用程序
2.5 練習題
第3章 信念網絡
3.1 結構化的優勢
3.1.1 獨立性建模
3.1.2 降低說明的負擔
3.2 不確定性與不可靠的證據
3.2.1 不確定性證據
3.2.2 不可靠證據
3.3 信念網絡
3.3.1 條件獨立性
3.3.2 對撞擊的影響
3.3.3 圖路徑獨立性操作
3.3.4 d-分離
3.3.5 圖與分佈的獨立性與相關性
3.3.6 信念網絡中的馬可夫等價性
3.3.7 信念網絡的有限表達性
3.4 因果關係
3.4.1 辛普森悖論
3.4.2 do算子
3.4.3 影響圖與do算子
3.5 總結
3.6 代碼
3.6.1 簡單的推論演示
3.6.2 條件獨立性演示
3.6.3 實用程序
3.7 練習題
第4章 圖模型
4.1 圖模型簡介
4.2 馬可夫網絡
4.2.1 馬可夫性質
4.2.2 馬可夫隨機場
4.2.3 Hammersley-Clifford理論
4.2.4 使用馬可夫網絡的條件獨立性
…
第二部分 學習機率模型
第三部分 機器學習
第四部分 動態模型
第五部分 近似推斷
附錄 數學基礎
參考文獻
