因果推斷導論
俞奎//王浩//梁吉業
- 出版商: 機械工業
- 出版日期: 2023-08-01
- 定價: $474
- 售價: 8.5 折 $403
- 語言: 簡體中文
- 頁數: 232
- 裝訂: 平裝
- ISBN: 7111731077
- ISBN-13: 9787111731078
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨
買這商品的人也買了...
-
多變量分析 (Applied Mutivariate Techniques)$550$539 -
世界第一簡單統計學-因素分析篇$280$238 -
機器學習$648$616 -
Causal Inference in Statistics: A Primer (Paperback)$1,840$1,748 -
百辯經濟學:為娼妓、皮條客、毒販、吸毒者、誹謗者、偽造貨幣者、高利貸業者、為富不仁的資本家……這些「背德者」辯護$380$300 -
重構|改善既有程式的設計, 2/e (繁中平裝版)(Refactoring: Improving The Design of Existing Code, 2/e)$800$632 -
Introduction to Probability, 2/e (Hardcover)$1,750$1,715 -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537 -
$806可解釋人工智能導論 -
$469統計推斷:面向工程和數據科學 -
$796R語言臨床預測模型實戰 -
$403因果推斷:基於圖模型分析羅銳 -
Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more (Paperback)$2,100$1,995 -
$1,015貝葉斯推理與機器學習 -
從統計思維出發 - 用 Python 實作的機器學習範例$880$695 -
寫程式前的必學工具:命令列、編輯器、Git/GitHub,軟體開發三本柱一次搞定$490$387 -
OpenAI API 基礎必修課 -- 使用 Python (GPT-3.5、GPT-4、GPT-4o、DALL·E、TTS、Whisper模型)$520$411 -
超簡單圖解微積分$380$323 -
Python 初學特訓班:從快速入門、主流應用到 AI 全面實戰, 6/e (附超過500分鐘影音教學/範例程式)$490$387 -
R語言醫學數據分析實踐$594$564 -
Veridical Data Science: The Practice of Responsible Data Analysis and Decision Making (Hardcover)$2,160$2,117 -
$708可解釋機器學習:黑盒模型可解釋性理解指南, 2/e -
全面掌握 Gemini 開發實務:輕鬆駕馭 Google AI 引擎$680$537 -
深度學習詳解|台大李宏毅老師機器學習課程精粹$750$593 -
Clean Code:Python 寫乾淨程式碼 - 告別技術債,不再為爛程式加班收爛攤$720$569
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
VIP 95折
深度學習:基礎與概念$1,128$1,072 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
本書包括13章內容。
第1章介紹了因果推斷的基本概念。
第2章和第3章介紹了Rubin的潛在結果模型,包括潛在結果模型的基本概念、假設,以及因果效應估計方法。
第4章介紹了Pearl結構因果模型框架下的do演算、因果貝葉斯網絡、結構因果模型的基本概念。
第5章介紹了混雜偏差的圖形化定義與識別、後門準則和前門準則。
第6章介紹了圖形化定義的選擇偏差與計算方法。
第7章和第8章分別介紹了反事實和中介效應。
第9章介紹了圖形化定義的工具變量的基本概念和計算方法。
第10~12章介紹了從觀測數據中學習因果結構的基本概念與方法。
第13章介紹了因果結構未知情形下的因果效應估計方法。
作者簡介
王浩,合肥工業大學教授,博士生導師,中國工程教育認證專家,國家精品課程負責人,教育部大學計算機課程教學指導委員會委員。主要研究領域為數據挖掘與分佈式智能系統,共發表學術論文120餘篇。獲安徽省優秀教學成果特等獎1項、一等獎5項。主持和參加國家重點研發計劃、國家自然科學基金委重大研究計劃及國家自然科學基金多項。
目錄大綱
推薦序
前言
符號表
第一部分因果推斷基礎
第1章因果關係推斷的基本概念
1.1 因果關係推斷
1.2 混雜與辛普森悖論
1.3 隨機對照試驗1.4
數據驅動的因果推斷模型
1.5 圖模型
1.5.1 有向無環圖
1.5.2 最大祖先圖
1.6 貝葉斯網絡
參考文獻
第二部分Rubin潛在結果模型與因果效應
第2章潛在結果模型與因果效應的概念
2.1 潛在結果模型的概念
2.1.1 潛在結果的定義
2.1. 2 潛在結果模型
2.2 因果效應定義與假設
2.2.1 個體因果效應
2.2.2 平均因果效應
2.2.3 異質性因果效應
2.3 拓展閱讀
參考文獻
第3章因果效應估計方法
3.1 匹配方法
3.1.1 選擇協變量
3.1.2 定義距離度量
3.1.3 選擇匹配算法
3.1.4 評估匹配算法
3.2 分層方法
3.3 重加權方法
3.3.1 樣本重加權
3.3.2 樣本和協變量重加權
3.4 表示學習方法
3.4.1 問題轉化
3.4.2 反事實回歸方法
……
第三部分Pearl因果圖模型與方法
第四部分因果結構學習方法
第五部分因果結構未知情形下的因果效應估計
