Applied Matrix and Tensor Variate Data Analysis (SpringerBriefs in Statistics)

相關主題

商品描述

This book provides comprehensive reviews of recent progress in matrix variate and tensor variate data analysis from applied points of view. Matrix and tensor approaches for data analysis are known to be extremely useful for recently emerging complex and high-dimensional data in various applied fields. The reviews contained herein cover recent applications of these methods in psychology (Chap. 1), audio signals (Chap. 2) , image analysis  from tensor principal component analysis (Chap. 3), and image analysis from decomposition (Chap. 4), and genetic data (Chap. 5) . Readers will be able to understand the present status of these techniques as applicable to their own fields.  In Chapter 5 especially, a theory of tensor normal distributions, which is a basic in statistical inference, is developed, and multi-way regression, classification, clustering, and principal component analysis are exemplified under tensor normal distributions. Chapter 6 treats one-sided tests under matrix variate and tensor variate normal distributions, whose theory under multivariate normal distributions has been a popular topic in statistics since the books of Barlow et al. (1972) and Robertson et al. (1988). Chapters 1, 5, and 6 distinguish this book from ordinary engineering books on these topics.

商品描述(中文翻譯)

本書從應用的角度提供了對矩陣變量和張量變量數據分析近期進展的全面回顧。矩陣和張量方法在各種應用領域中對於最近出現的複雜和高維數據被認為是極其有用的。本書中的回顧涵蓋了這些方法在心理學(第1章)、音頻信號(第2章)、基於張量主成分分析的圖像分析(第3章)、基於分解的圖像分析(第4章)以及基因數據(第5章)中的近期應用。讀者將能夠理解這些技術在其自身領域的現狀。特別是在第5章中,發展了一種張量正態分佈的理論,這是統計推斷中的基本理論,並在張量正態分佈下舉例說明了多向回歸、分類、聚類和主成分分析。第6章處理了在矩陣變量和張量變量正態分佈下的單邊檢驗,其在多變量正態分佈下的理論自Barlow等(1972年)和Robertson等(1988年)的書籍以來一直是統計學中的熱門主題。第1章、第5章和第6章使本書與這些主題的普通工程書籍區別開來。