Trends in Control Theory and Partial Differential Equations
暫譯: 控制理論與偏微分方程的趨勢
Alabau-Boussouira, Fatiha, Ancona, Fabio, Porretta, Alessio
- 出版商: Springer
- 出版日期: 2019-07-17
- 售價: $6,020
- 貴賓價: 9.5 折 $5,719
- 語言: 英文
- 頁數: 276
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030179486
- ISBN-13: 9783030179489
-
相關分類:
控制系統 Control-systems
海外代購書籍(需單獨結帳)
相關主題
商品描述
商品描述(中文翻譯)
1. P. Albano,關於退化波動方程的Dirichlet問題的一些評論。
2. V. Basco 和 H. Frankowska,具有狀態約束的無限時間最優控制問題的值函數的Lipschitz連續性。
3. P. Cannarsa 等,Herglotz的一般化變分原理和接觸型Hamilton-Jacobi方程。
4. P. Cannarsa 等,通過Carleman估計的傳輸方程的可觀測性不等式。
5. I. Capuzzo Dolcetta,關於退化橢圓算子的弱最大原則。
6. P. Cardaliaguet,關於具有局部耦合的均場博弈中開環Nash均衡的收斂性。
7. E. Fernández-Cara 和 D. A. Souza,關於一類b-方程的控制的評論。
8. G. Leugering 等,通過粘彈性彈簧和質量耦合的1維波方程:準線性邊界可控性和線性模型的指數穩定性。
9. P. Loreti 和 D. Sforza,一個半線性積分微分方程:全局存在性和隱藏的正則性。
10. M. Mazzola 和 K. T. Nguyen,通過Baire類別的Lyapunov定理。
11. D. Pighin 和 E. Zuazua,具有正性約束的多維波方程的可控性。
12. C. Pignotti 和 I. Reche Vallejo,具有領導和分佈延遲的Cucker-Smale系統的漸近分析。
13. J. Vancostenoble,具有奇異勢能的拋物方程的全局非負近似可控性。
作者簡介
Fatiha Alabau-Boussouira gained her PhD at the Pierre and Marie Curie University, Paris, in 1987. She was an Assistant Professor at the University of Bordeaux from 1988 until 1997, when she became a Full Professor at the Louis Pasteur University in Strasbourg; she subsequently moved to the University of Metz in 1999 (which became the University of Lorraine in 2012). She carries out her research at the Jacques-Louis Lions Laboratory at Sorbonne University. She is the author of more than 60 papers in mathematics analysis and applications. Her scientific interests mainly focus on the theory of control and stabilization of partial differential equations. From 2014 to 2017, she was President of the French Society of Applied and Industrial Mathematics (SMAI). She is now the head for France of the French-German-Italian LIA COPDESC on Applied Analysis.
Fabio Ancona obtained his PhD in Mathematics in 1993 at University of Colorado at Boulder. He was a Research Associate in Mathematical Analysis at University of Bologna from 1995 until 2001, when he became Associate Professor. In 2008 he moved to the University of Padua, where he became Full Professor in 2017. He is the author of more than 40 papers in mathematics analysis and applications. His scientific interests mainly focus on the theory of control and of hyperbolic partial differential equations.
Alessio Porretta is Full Professor of Mathematical Analysis at the University of Rome Tor Vergata. His research activity focuses mainly on convection-diffusion equations, Hamilton-Jacobi, control theory, and mean field games. He has given seminars in more than 20 universities in Italy and abroad and has recently been invited to give courses on mean field games in Paris, Chicago, and ETH Zurich. He has authored over 70 research papers, with nearly 1000 citations in math journals.
Carlo Sinestrari received his PhD from the University of Rome Tor Vergata, where he later became a Full Professor in Mathematical Analysis. His research interests include the analysis of nonlinear first-order partial differential equations and the formation of singularities for geometric evolution equations. He is the author of more than 40 papers in research journals. Together with P. Cannarsa he has written a monograph on semiconcave functions and their applications to optimal control theory.
作者簡介(中文翻譯)
法蒂哈·阿拉巴烏-布蘇伊拉於1987年在巴黎的皮埃爾與瑪麗·居里大學獲得博士學位。她於1988年至1997年擔任波爾多大學的助理教授,1997年成為斯特拉斯堡路易斯·巴斯德大學的正教授;隨後於1999年轉至梅斯大學(該校於2012年更名為洛林大學)。她在索邦大學的雅克-路易·里昂實驗室進行研究。她在數學分析及應用方面發表了超過60篇論文。她的科學興趣主要集中在偏微分方程的控制與穩定性理論上。從2014年到2017年,她擔任法國應用與工業數學學會(SMAI)的會長。她目前是法國-德國-義大利應用分析聯合研究中心(LIA COPDESC)的負責人。
法比奧·安科納於1993年在科羅拉多大學博爾德分校獲得數學博士學位。他於1995年至2001年在博洛尼亞大學擔任數學分析的研究助理,2001年成為副教授。2008年,他轉至帕多瓦大學,並於2017年成為正教授。他在數學分析及應用方面發表了超過40篇論文。其科學興趣主要集中在控制理論及雙曲型偏微分方程的理論上。
阿萊西奧·波雷塔是羅馬托爾維爾加大學的數學分析正教授。他的研究活動主要集中在對流-擴散方程、哈密頓-雅可比方程、控制理論及均場博弈上。他曾在意大利及國外的20多所大學舉辦研討會,並最近受邀在巴黎、芝加哥及蘇黎世聯邦理工學院開設均場博弈的課程。他已發表超過70篇研究論文,並在數學期刊上獲得近1000次引用。
卡洛·西內斯特拉里於羅馬托爾維爾加大學獲得博士學位,並在該校成為數學分析的正教授。他的研究興趣包括非線性一階偏微分方程的分析及幾何演化方程的奇異性形成。他在研究期刊上發表了超過40篇論文。與P. Cannarsa共同撰寫了一本關於半凹函數及其在最優控制理論中的應用的專著。