Group Representation for Quantum Theory
暫譯: 量子理論的群表示

Masahito Hayashi

  • 出版商: Springer
  • 出版日期: 2018-09-09
  • 售價: $6,930
  • 貴賓價: 9.5$6,584
  • 語言: 英文
  • 頁數: 368
  • 裝訂: Paperback
  • ISBN: 3319831593
  • ISBN-13: 9783319831596
  • 相關分類: 量子 Quantum
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction.

To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory.

 

Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics.

To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model.

 

Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

商品描述(中文翻譯)

這本書用量子理論的語言解釋了量子理論的群表示理論。眾所周知,群表示理論是量子理論中一個非常強大的工具,特別是在角動量、氫型哈密頓量、自旋-軌道相互作用、夸克模型、量子光學以及量子資訊處理(包括量子錯誤修正)等方面。

為了描述群表示理論在量子理論中的應用全貌,本書需要包含以下六個主題:置換群、SU(2) 和 SU(d)、海森堡表示、擠壓操作、離散海森堡表示,以及從統一的觀點包括射影表示與傅立葉變換的關係。不幸的是,儘管有許多優秀的數學書籍涵蓋這六個主題中的某一部分,但沒有一本書能包含所有這些主題,因為它們過於細分。此外,其中一些書籍以數學風格的抽象方式撰寫,材料往往過於分散。至少,這些符號對於從事量子理論的人來說並不熟悉。

其他書籍雖然是良好的入門書,但並未涉及與量子理論相關的主題。特別是,這些入門書並未涵蓋在量子理論中更為重要的射影表示。另一方面,雖然有幾本針對物理學家的書籍,但這些書籍過於簡單,缺乏詳細的討論。因此,即使在物理學的進階學習中,它們也不太有用。

為了解決這個問題,本書從量子理論的基本數學開始。然後,它介紹群表示的基本概念,並討論有限群的情況,例如對稱群。接下來,本書討論李群和李代數。這部分從基本知識開始,然後進入特殊群,例如 SU(2)、SU(1,1) 和 SU(d)。在介紹特殊群之後,本書解釋了對物理系統的具體應用,例如角動量、氫型哈密頓量、自旋-軌道相互作用和夸克模型。

然後,本書進入李群和李代數的一般理論。利用這些知識,本書解釋了具有海森堡群對稱性和由 SL(2,R) 和 Sp(2n,R) 產生的擠壓對稱性的玻色系統。最後,作為離散版本,本書處理與量子錯誤修正相關的離散海森堡表示。為了增強讀者的理解,本書包含54幅圖、23個表格和111道附有解答的習題。