Meshfree Methods for Partial Differential Equations VIII (Lecture Notes in Computational Science and Engineering)
暫譯: 無網格方法於偏微分方程 VIII(計算科學與工程講義)

  • 出版商: Springer
  • 出版日期: 2017-04-08
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Hardcover
  • ISBN: 3319519530
  • ISBN-13: 9783319519531
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. The growing interest in these methods is in part due to the fact that they offer extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods have a number of advantageous features that are especially attractive when dealing with multiscale phenomena: A-priori knowledge about the solution’s particular local behavior can easily be introduced into the meshfree approximation space, and coarse scale approximations can be seamlessly refined by adding fine scale information. However, the implementation of meshfree methods and their parallelization also requires special attention, for instance with respect to numerical integration.

商品描述(中文翻譯)

自1990年代中期以來,無網格方法、粒子方法和廣義有限元素方法已經有了顯著的發展。對這些方法日益增長的興趣部分源於它們提供了極具靈活性的數值工具,並且可以以多種方式進行解釋。例如,無網格方法可以被視為經典有限元素法和有限差分法的自然擴展,適用於沒有固定連接的散佈節點配置。此外,無網格方法具有多項優勢特徵,特別是在處理多尺度現象時更具吸引力:關於解的特定局部行為的先驗知識可以輕鬆地引入到無網格近似空間中,並且粗尺度近似可以通過添加細尺度信息無縫地進行細化。然而,無網格方法的實現及其並行化也需要特別注意,例如在數值積分方面。