Programming the Finite Element Method, 4/e
暫譯: 有限元素法程式設計(第4版)

I. M. Smith, D. V. Griffiths

  • 出版商: Wiley
  • 出版日期: 2004-09-17
  • 售價: $1,450
  • 貴賓價: 9.8$1,421
  • 語言: 英文
  • 頁數: 648
  • 裝訂: Paperback
  • ISBN: 0470849703
  • ISBN-13: 9780470849705
  • 無法訂購

買這商品的人也買了...

相關主題

商品描述

Description

This title demonstrates how to develop computer programmes which solve specific engineering problems using the finite element method. It enables students, scientists and engineers to assemble their own computer programmes to produce numerical results to solve these problems. The first three editions of Programming the Finite Element Method established themselves as an authority in this area.  This fully revised 4th edition includes completely rewritten programmes with a unique description and list of parallel versions of programmes in Fortran 90.  The Fortran programmes and subroutines described in the text will be made available on the Internet via anonymous ftp, further adding to the value of this title. 

 

Table of Contents

Preface.

Acknowledgement.

1. Preliminaries: Computer Strategies.

1.1 Introduction.

1.2 Hardware.

1.3 Memory management.

1.4 Vector processors.

1.5 Parallel processors.

1.6 BLAS libraries.

1.7 MPI libraries.

1.8 Applications software.

1.8.1 Arithmetic.

1.8.2 Conditions.

1.8.3 Loops.

1.9 Array features.

1.9.1 Dynamic arrays.

1.9.2 Broadcasting.

1.9.3 Constructors.

1.9.4 Vector subscripts.

1.9.5 Array sections.

1.9.6 Whole-array manipulations.

1.9.7 Intrinsic procedures for arrays.

1.9.8 Additional Fortran 95 features.

1.9.9 Subprogram libraries.

1.9.10 Structured programming.

1.10 Conclusions.

References.

2. Spatial Discretisation by Finite Elements.

2.1 Introduction.

2.2 Rod element.

2.2.1 Rod stiffness matrix.

2.2.2 Rod mass element.

2.3 The eigenvalue equation.

2.4 Beam element.

2.4.1 Beam element stiffness matrix.

2.4.2 Beam element mass matrix.

2.5 Beam with an axial force.

2.6 Beam on an elastic foundation.

2.7 General remarks on the discretisation process.

2.8 Alternative derivation of element stiffness.

2.9 Two-dimensional elements: plane strain and plane stress.

2.10 Energy approach.

2.11 Plane element mass matrix.

2.12 Axisymmetric stress and strain.

2.13 Three-dimensional stress and strain.

2.14 Plate-bending element.

2.15 Summary of element equations for solids.

2.16 Flow of fluids: Navier–Stokes equations.

2.17 Simplified flow equations.

2.17.1 Steady state.

2.17.2 Transient state.

2.17.3 Advection.

2.18 Further coupled equations: Biot consolidation.

2.19 Conclusions.

References.

3. Programming Finite Element Computations.

3.1 Introduction.

3.2 Local coordinates for quadrilateral elements.

3.2.1 Numerical integration for quadrilaterals.

3.2.2 Analytical integration for quadrilaterals .

3.3 Local coordinates for triangular elements.

3.3.1 Numerical integration for triangles.

3.4 Multi-element assemblies.

3.5 “Element-by-element” or “Mesh-free” techniques.

3.5.1 Conjugate gradient method.

3.5.2 Preconditioning.

3.5.3 Unsymmetric systems.

3.5.4 Symmetric non-positive definite equations.

3.5.5 Symmetric eigenvalue systems.

3.6 Incorporation of boundary conditions.

3.7 Programming using building blocks.

3.7.1 Black box routines.

3.7.2 Special purpose routines.

3.7.3 Plane elastic analysis using quadrilateral elements.

3.7.4 Plane elastic analysis using triangular elements.

3.7.5 Axisymmetric strain of elastic solids.

3.7.6 Plane steady laminar fluid flow.

3.7.7 Mass matrix formation.

3.7.8 Higher-order 2D elements.

3.7.9 Three-dimensional elements.

3.7.10 Assembly of elements.

3.8 Solution of equilibrium equations.

3.9 Evaluation of eigenvalues and eigenvectors.

3.9.1 Jacobi algorithm.

3.9.2 Lanczos algorithm.

3.10 Solution of first order time dependent problems.

3.11 Solution of coupled Navier–Stokes problems.

3.12 Solution of coupled transient problems.

3.12.1 Absolute load version.

3.12.2 Incremental load version.

3.13 Solution of second order time dependent problems.

3.13.1 Modal superposition.

3.13.2 Newmark or Crank–Nicolson method.

3.13.3 Wilson’s method.

3.13.4 Explicit methods and other storage-saving strategies.

References.

4. Static Equilibrium of Structures.

4.1 Introduction.

Program 4.1 One-dimensional analysis of axially loaded elastic rods using 2-node rod elements.

Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod elements in two or three dimensions.

Program 4.3 Analysis of elastic beams using 2-node beam elements (elastic foundation optional).

Program 4.4 Analysis of elastic rigid-jointed frames using 2-node beam/rod elements in two or three dimensions.

Program 4.5 Analysis of elastic–plastic beams or rigid-jointed frames using 2-node beam or beam/rod elements in one, two or three dimensions.

Program 4.6 Stability (buckling) analysis of elastic beams using 2-node beam elements (elastic foundation optional).

Program 4.7 Analysis of plates using 4-node rectangular plate elements. Homogeneous material with identical elements. Mesh numbered in x- or y-direction.

4.2 Concluding remarks.

4.3 Exercises.

References.

5. Static Equilibrium of Linear Elastic Solids.

5.1 Introduction.

Program 5.1 Plane or axisymmetric strain analysis of an elastic solid using 3-, 6-, 10-, or 15-node right-angled triangles or 4-, 8-, or 9-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction.

Program 5.2 Non-axisymmetric analysis of an axisymmetric elastic solid using 8-node rectangular quadrilaterals. Mesh numbered in r- or z-direction.

Program 5.3 Three-dimensional analysis of an elastic solid using 8-, 14-, or 20-node brick hexahedra. Mesh numbered in x-z planes then in the y-direction. Program 5.4 General two- (plane strain) or three-dimensional analysis of elastic solids.

Program 5.5 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-node brick hexahedra. Mesh numbered in x-z planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver.

Program 5.6 Three-dimensional strain of an elastic solid using 8-, 14-, or 20-node brick hexahedra. Mesh numbered in x-z planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver. Vectorised version.

5.2 Exercises.

References.

6. Material Non-linearity.

6.1 Introduction.

6.2 Stress–strain behaviour.

6.3 Stress invariants.

6.4 Failure criteria.

6.4.1 Von Mises.

6.4.2 Mohr–Coulomb and Tresca.

6.5 Generation of body loads.

6.6 Viscoplasticity.

6.7 Initial stress.

6.8 Corners on the failure and potential surfaces.

Program 6.1 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Viscoplastic strain method.

Program 6.2 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver.

Program 6.3 Plane strain slope stability analysis of an elastic–plastic (Mohr–Coulomb) material using 8-node rectangular quadrilaterals. Viscoplastic strain method.

Program 6.4 Plane strain earth pressure analysis of an elastic–plastic (Mohr–Coulomb) material using 8-node rectangular quadrilaterals. Initial stress method.

6.9 Elasto-plastic rate integration.

6.9.1 Forward Euler method.

6.9.2 Backward Euler method.

6.10 Tangent stiffness approaches.

6.10.1 Inconsistent tangent matrix.

6.10.2 Consistent tangent matrix.

6.10.3 Convergence criterion.

Program 6.5 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Initial stress method. Tangent stiffness. Consistent return algorithm.

Program 6.6 Plane strain bearing capacity analysis of an elastic–plastic (von Mises) material using 8-node rectangular quadrilaterals. Initial stress method. Tangent stiffness. Consistent return algorithm. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver.

6.11 The geotechnical processes of embanking and excavation.

6.11.1 Embanking.

Program 6.7 Plane strain construction of an elastic–plastic (Mohr–Coulomb) embankment in layers on a foundation using 8-node quadrilaterals. Viscoplastic strain method.

6.11.2 Excavation.

Program 6.8 Plane strain construction of an elastic–plastic (Mohr–Coulomb) excavation in layers using 8-node quadrilaterals. Viscoplastic strain method.

6.12 Undrained analysis.

Program 6.9 Axisymmetric “undrained” strain of an elastic–plastic (Mohr–Coulomb) solid using 8-node rectangular quadrilaterals. Viscoplastic strain method.

Program 6.10 Three-dimensional strain analysis of an elastic–plastic (Mohr–Coulomb) slope using 20-node hexahedra. Viscoplastic strain method.

Program 6.11 Three-dimensional strain analysis of an elastic–plastic (Mohr–Coulomb) slope using 20-node hexahedra. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver.

6.13 Exercises.

References.

7. Steady State Flow.

7.1 Introduction.

Program 7.1 One-dimensional analysis of steady seepage using 2-node line elements.

Program 7.2 Plane or axisymmetric analysis of steady seepage using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)- direction.

Program 7.3 Analysis of plane free-surface flow using 4-node quadrilaterals. “Analytical” form of element conductivity matrix.

Program 7.4 General two- (plane) or three-dimensional analysis of steady seepage.

Program 7.5 General two- (plane) or three-dimensional analysis of steady seepage.

No global conductivity matrix assembly. Diagonally preconditioned conjugate gradient solver.

7.2 Exercises.

References.

8. Transient Problems: First Order (Uncoupled).

8.1 Introduction.

Program 8.1 One-dimensional consolidation analysis using 2-node line elements. Implicit time integration using the “theta” method.

Program 8.2 Plane or axisymmetric consolidation analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time integration using the “theta” method.

8.2 Mesh-free Strategies in Transient Analysis.

Program 8.3 Plane or axisymmetric consolidation analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time integration using the “theta” method. No global stiffness matrix assembly. Diagonal preconditioner conjugate gradient solver.

Program 8.4 Plane or axisymmetric analysis of the consolidation equation using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Explicit time integration using the “theta = 0” method.

Program 8.5 Plane or axisymmetric analysis of the consolidation equation using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. “theta” method using an element-by-element product algorithm.

8.3 Comparison of Programs 8.2, 8.3, 8.4, and 8.5.

Program 8.6 General two- (plane) or three-dimensional analysis of the consolidation equation. Implicit time integration using the “theta” method.

Program 8.7 Plane analysis of the diffusion–convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the “theta” method. Self-adjoint transformation.

Program 8.8 Plane analysis of the diffusion–convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the “theta” method. Untransformed solution.

8.4 Exercises.

References.

9. Coupled Problems.

9.1 Introduction.

Program 9.1 Analysis of the plane steady state Navier–Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in x- or y-direction. Freedoms numbered in the order u-p-v.

Program 9.2 Analysis of the plane steady state Navier–Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in x- or y-direction. Freedoms numbered in the order u-p-v. Element-by-element solution using BiCGStab(l) with no preconditioning. No global matrix assembly.

Program 9.3 Plane strain consolidation analysis of a Biot poro-elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order u-v-uw. Incremental version.

Program 9.4 Plane strain consolidation analysis of a Biot poro-elastic-plastic (Mohr–Coulomb) material using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order u-v-uw. Incremental version. Viscoplastic strain method.

Program 9.5 Plane strain consolidation analysis of a Biot poro-elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order u-v-uw. Absolute load version. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver.

9.2 Exercises.

References.

10. Eigenvalue Problems.

10.1 Introduction.

Program 10.1 Eigenvalue analysis of elastic beams using 2-node beam elements. Lumped mass.

Program 10.2 Eigenvalue analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in x- or y-direction.

Program 10.3 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos Method. Consistent mass. Mesh numbered in x- or y-direction.

Program 10.4 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos Method. Lumped mass. Element-byelement formulation. Mesh numbered in x- or y-direction.

10.2 Exercises.

References.

11. Forced Vibrations.

11.1 Introduction.

Program 11.1 Forced vibration analysis of elastic beams using 2-node beam elements. Consistent mass. Newmark time stepping.

Program 11.2 Forced vibration analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in x- or y-direction. Modal superposition.

Program 11.3 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x- or y-direction. Implicit time integration using the “theta” method.

Program 11.4 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x- or y-direction. Implicit time integration using Wilson’s method.

Program 11.5 Forced vibration analysis of an elastic solid in plane strain using rectangular uniform size 4-node quadrilaterals. Mesh numbered in the xor y-direction. Lumped or consistent mass. Mixed explicit/implicit time integration.

Program 11.6 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in x- or y-direction. Implicit time integration using the “theta” method. No global matrix assembly. Diagonally preconditioned conjugate

gradient solver.

Program 11.7 Forced vibration analysis of an elastic–plastic (von Mises) solid in plane strain using rectangular 8-node quadrilateral elements. Lumped mass. Mesh numbered in x- or y-direction. Explicit time integration.

11.2 Exercises.

References.

12. Parallel Processing of Finite Element Analyses.

12.1 Introduction.

12.2 Differences between parallel and serial programs.

12.2.1 Parallel libraries.

12.2.2 Global variables.

12.2.3 MPI library routines.

12.2.4 The pp appendage.

12.2.5 Reading and writing.

12.2.6 Problem-specific boundary condition routines.

12.2.7 rest instead of nf.

12.2.8 Gathering and scattering.

12.2.9 Reindexing.

12.2.10 Domain composition.

12.2.11Load balancing.

Program 12.1 Three dimensional analysis of an elastic solid. Compare Program 5.5.

Program 12.2 Three dimensional analysis of an elasto-plastic (Mohr–Coulomb) solid. Compare Program 6.11.

Program 12.3 Three dimensional Laplacian flow. Compare Program 7.5.

Program 12.4 Three dimensional transient flow- implicit analysis in time. Compare Program 8.3.

Program 12.5 Three dimensional transient flow-explicit analysis in time. Compare Program 8.4.

Program 12.6 Three dimensional steady state Navier–Stokes analysis. Compare Program 9.2.

Program 12.7 Three-dimensional analysis of Biot poro-elastic solid. Compare Program 9.2.

Program 12.8 Eigenvalue analysis of three-dimensional elastic solid. Compare Program 10.4.

Program 12.9 Forced vibration analysis of a three-dimensional elastic solid. Implicit integration in time. Compare Program 11.4.

Program 12.10 Forced vibration analysis of three-dimensional elasto-plastic solid. Explicit integration in time. Compare Program 11.5.

12.3 Performance data for a “Beowulf” PC cluster.

12.4 Conclusions.

References.

A. Equivalent Nodal Loads.

B. Shape Functions and Element Node Numbering.

C. Plastic Stress–strain Matrices and Plastic Potential Derivatives.

D. main Library Subroutines.

E. geom Library Subroutines.

F. Parallel Library Subroutines.

Author Index.

Subject Index.

商品描述(中文翻譯)

**描述**

本書展示如何使用有限元素法開發解決特定工程問題的計算機程序。它使學生、科學家和工程師能夠組裝自己的計算機程序,以產生數值結果來解決這些問題。《Programming the Finite Element Method》的前三版已在這一領域建立了權威地位。本次全面修訂的第四版包含完全重寫的程序,並提供獨特的描述和 Fortran 90 的平行版本程序列表。文中描述的 Fortran 程序和子程序將通過匿名 ftp 在互聯網上提供,進一步提升本書的價值。

**目錄**

前言
致謝
**1. 初步知識:計算機策略**
1.1 介紹
1.2 硬體
1.3 記憶體管理
1.4 向量處理器
1.5 平行處理器
1.6 BLAS 函式庫
1.7 MPI 函式庫
1.8 應用軟體
1.8.1 算術
1.8.2 條件
1.8.3 迴圈
1.9 陣列特性
1.9.1 動態陣列
1.9.2 廣播
1.9.3 建構子
1.9.4 向量下標
1.9.5 陣列區段
1.9.6 整個陣列操作
1.9.7 陣列的內建程序
1.9.8 其他 Fortran 95 特性
1.9.9 子程序庫
1.9.10 結構化編程
1.10 結論
參考文獻
**2. 透過有限元素進行空間離散化**
2.1 介紹
2.2 杆元素
2.2.1 杆剛度矩陣
2.2.2 杆質量元素
2.3 特徵值方程
2.4 梁元素
2.4.1 梁元素剛度矩陣
2.4.2 梁元素質量矩陣
2.5 受軸向力的梁
2.6 在彈性基礎上的梁
2.7 離散化過程的一般說明
2.8 元素剛度的替代推導
2.9 二維元素:平面應變和平面應力
2.10 能量方法
2.11 平面元素質量矩陣
2.12 軸對稱應力和應變
2.13 三維應力和應變
2.14 板彎曲元素
2.15 固體元素方程的總結
2.16 流體流動:Navier–Stokes 方程
2.17 簡化流動方程
2.17.1 穩態
2.17.2 瞬態
2.17.3 對流
2.18 進一步的耦合方程:Biot 鞏固
2.19 結論
參考文獻
**3. 編程有限元素計算**
3.1 介紹
3.2 四邊形元素的局部坐標
3.2.1 四邊形的數值積分
3.2.2 四邊形的解析積分
3.3 三角形元素的局部坐標
3.3.1 三角形的數值積分
3.4 多元素組合
3.5 “逐元素”或“無網格”技術
3.5.1 共軛梯度法
3.5.2 預處理
3.5.3 不對稱系統
3.5.4 對稱非正定方程
3.5.5 對稱特徵值系統
3.6 邊界條件的納入
3.7 使用構建塊進行編程
3.7.1 黑箱例程
3.7.2 特殊用途例程
3.7.3 使用四邊形元素的平面彈性分析
3.7.4 使用三角形元素的平面彈性分析
3.7.5 彈性固體的軸對稱應變
3.7.6 平面穩態層流
3.7.7 質量矩陣形成
3.7.8 高階 2D 元素
3.7.9 三維元素
3.7.10 元素的組合
3.8 平衡方程的解
3.9 特徵值和特徵向量的評估
3.9.1 Jacobi 算法
3.9.2 Lanczos 算法
3.10 一階時間依賴問題的解
3.11 耦合 Navier–Stokes 問題的解
3.12 耦合瞬態問題的解
3.12.1 絕對載荷版本
3.12.2 增量載荷版本
3.13 二階時間依賴問題的解
3.13.1 模態疊加
3.13.2 Newmark 或 Crank–Nicolson 方法
3.13.3 Wilson 方法
3.13.4 顯式方法和其他節省儲存的策略
參考文獻
**4. 結構的靜態平衡**
4.1 介紹
程序 4.1 使用 2 節點杆元素進行軸向載荷的 一維分析
程序 4.2 使用 2 節點杆元素在二或三維中分析彈性鉸接框架
程序 4.3 使用 2 節點梁元素分析彈性梁(彈性基礎可選)
程序 4.4 使用 2 節點梁/杆元素在二或三維中分析彈性剛接框架
程序 4.5 使用 2 節點梁或梁/杆元素在一、二或三維中分析彈性-塑性梁或剛接框架
程序 4.6 使用 2 節點梁元素進行彈性梁的穩定性(屈曲)分析(彈性基礎可選)
程序 4.7 使用 4 節點矩形板元素分析板。均勻材料,元素相同。網格在 xy 方向編號。
4.2 總結
4.3 練習
參考文獻
**5. 線性彈性固體的靜態平衡**
5.1 介紹
程序 5.1 使用 3、6、10 或 15 節點直角三角形或 4、8 或 9 節點矩形四邊形進行彈性固體的平面或軸對稱應變分析。網格在 x(r)y(z) 方向編號。
程序 5.2 使用 8 節點矩形四邊形進行非軸對稱的軸對稱彈性固體分析。網格在 rz 方向編號。
程序 5.3 使用 8、14 或 20 節點磚六面體進行彈性固體的三維分析。網格在 x-z 平面編號,然後在 y 方向。程序 5.4 一般的二(平面應變)或三維彈性固體分析。
程序 5.5 使用 8、14 或 20 節點磚六面體進行彈性固體的三維應變分析。網格在 x-z 平面編號,然後在 y 方向。無全局剛度矩陣組合。對角預處理的共軛梯度求解器。
程序 5.6 使用 8、14 或 20 節點磚六面體進行彈性固體的三維應變分析。網格在 x-z 平面編號,然後在 y 方向。無全局剛度矩陣組合。對角預處理的共軛梯度求解器。向量化版本。
5.2 練習
參考文獻
**6. 材料非線性**
6.1 介紹
6.2 應力-應變行為
6.3 應力不變量
6.4 破壞準則
6.4.1 Von Mises
6.4.2 Mohr–Coulomb 和 Tresca
6.5 體載荷的生成
6.6 粘塑性
6.7 初始應力
6.8 破壞和潛在表面的角落
程序 6.1 使用 8 節點矩形四邊形進行彈性-塑性(von Mises)材料的平面應變承載能力分析。粘塑性應變方法。
程序 6.2 使用 8 節點矩形四邊形進行彈性-塑性(von Mises)材料的平面應變承載能力分析。粘塑性應變方法。無全局剛度矩陣組合。對角預處理的共軛梯度求解器。
程序 6.3 使用 8 節點矩形四邊形進行彈性-塑性(Mohr–Coulomb)材料的平面應變邊坡穩定性分析。粘塑性應變方法。
程序 6.4 使用 8 節點矩形四邊形進行彈性-塑性(Mohr–Coulomb)材料的平面應變土壓分析。初始應力方法。
6.9 彈性-塑性速率積分
6.9.1 向前歐拉方法
6.9.2 向後歐拉方法
6.10 切線剛度方法
6.10.1 不一致的切線矩陣
6.10.2 一致的切線矩陣
6.10.3 收斂準則
程序 6.5 使用 8 節點矩形四邊形進行彈性-塑性(von Mises)材料的平面應變承載能力分析。初始應力方法。切線剛度。一致返回算法。
程序 6.6 使用 8 節點矩形四邊形進行彈性-塑性(von Mises)材料的平面應變承載能力分析。初始應力方法。切線剛度。一致返回算法。無全局剛度矩陣組合。對角預處理的共軛梯度求解器。
6.11 堤壩和挖掘的地質工程過程
6.11.1 堤壩
程序 6.7 使用 8 節點四邊形在基礎上分層構建彈性-塑性(Mohr–Coulomb)堤壩。粘塑性應變方法。
6.11.2 挖掘
程序 6.8 使用 8 節點四邊形在分層中構建彈性-塑性(Mohr–Coulomb)挖掘。粘塑性應變方法。
6.12 不排水分析
程序 6.9 使用 8 節點矩形四邊形進行彈性-塑性(Mohr–Coulomb)固體的軸對稱“無排水”應變分析。粘塑性應變方法。
程序 6.10 使用 20 節點六面體進行彈性-塑性(Mohr–Coulomb)邊坡的三維應變分析。粘塑性應變方法。
程序 6.11 使用 20 節點六面體進行彈性-塑性(Mohr–Coulomb)邊坡的三維應變分析。粘塑性應變方法。無全局剛度矩陣組合。對角預處理的共軛梯度求解器。
6.13 練習
參考文獻
**7. 穩態流動**
7.1 介紹
程序 7.1 使用 2 節點線元素進行穩態滲流的一維分析。
程序 7.2 使用 4 節點矩形四邊形進行穩態滲流的平面或軸對稱分析。網格在 x(r) 或 y(z) 方向編號。
程序 7.3 使用 4 節點四邊形分析平面自由表面流動。“解析”形式的元素導電矩陣。
程序 7.4 穩態滲流的一般二(平面)或三維分析。
程序 7.5 穩態滲流的一般二(平面)或三維分析。
無全局導電矩陣組合。對角預處理的共軛梯度求解器。
7.2 練習
參考文獻
**8. 瞬態問題:一階(未耦合)**
8.1 介紹
程序 8.1 使用 2 節點線元素進行一維固結分析。使用“theta”方法的隱式時間積分。
程序 8.2 使用 4 節點矩形四邊形進行平面或軸對稱固結分析。網格在 x(r) 或 y(z) 方向編號。使用“theta”方法的隱式時間積分。
8.2 瞬態分析中的無網格策略。
程序 8.3 平面或軸對稱...