Efficient Predictive Algorithms for Image Compression
Luís Filipe Rosário Lucas, Eduardo Antônio Barros da Silva, Sérgio Manuel Maciel de Faria, Nuno Miguel Morais Rodrigues, Carla Liberal Pagliari
- 出版商: Springer
- 出版日期: 2017-02-27
- 售價: $4,410
- 貴賓價: 9.5 折 $4,190
- 語言: 英文
- 頁數: 169
- 裝訂: Hardcover
- ISBN: 3319511793
- ISBN-13: 9783319511795
-
相關分類:
Algorithms-data-structures、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is investigated for compression of Light Field images based on the HEVC technology. A new linear prediction method using sparse constraints is also described, enabling improved coding performance of the HEVC standard, particularly for images with complex textures based on repeated structures. Finally, the authors present a new, generalized intra-prediction framework for the HEVC standard, which unifies the directional prediction methods used in the current video compression standards, with linear prediction methods using sparse constraints. Experimental results for the compression of natural images are provided, demonstrating the advantage of the unified prediction framework over the traditional directional prediction modes used in HEVC standard.
商品描述(中文翻譯)
本書討論了當前最先進的高效率視頻編碼(HEVC)標準的高效預測技術,重點關注各類視頻信號的壓縮,如3D視頻、光場和自然影像。作者首先回顧了2D和3D多媒體內容的最先進預測編碼方法和壓縮技術,為該領域的新研究者提供了一個良好的起點。接著,介紹並討論了超越標準化壓縮技術的新預測技術。在3D視頻的背景下,作者描述了一種新的深度圖壓縮預測算法,該算法結合了內部方向預測、靈活的區塊劃分和線性殘差擬合。對於光場和靜態影像的壓縮,描述了新的方法,這些方法對線性模型施加了稀疏性約束。基於HEVC技術,研究了基於局部線性嵌入的光場影像壓縮預測方法。還描述了一種使用稀疏約束的新線性預測方法,這使得HEVC標準的編碼性能得以改善,特別是對於基於重複結構的複雜紋理影像。最後,作者提出了一個新的、通用的HEVC標準內部預測框架,該框架統一了當前視頻壓縮標準中使用的方向預測方法與使用稀疏約束的線性預測方法。提供了自然影像壓縮的實驗結果,顯示了統一預測框架相較於HEVC標準中傳統方向預測模式的優勢。