Accelerators for Convolutional Neural Networks
暫譯: 卷積神經網絡的加速器
Munir, Arslan, Kong, Joonho, Qureshi, Mahmood Azhar
- 出版商: Wiley
- 出版日期: 2023-10-31
- 售價: $4,970
- 貴賓價: 9.5 折 $4,722
- 語言: 英文
- 頁數: 304
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1394171889
- ISBN-13: 9781394171880
-
相關分類:
DeepLearning、物聯網 IoT
海外代購書籍(需單獨結帳)
相關主題
商品描述
Comprehensive and thorough resource exploring different types of convolutional neural networks and complementary accelerators
Accelerators for Convolutional Neural Networks provides basic deep learning knowledge and instructive content to build up convolutional neural network (CNN) accelerators for the Internet of things (IoT) and edge computing practitioners, elucidating compressive coding for CNNs, presenting a two-step lossless input feature maps compression method, discussing arithmetic coding -based lossless weights compression method and the design of an associated decoding method, describing contemporary sparse CNNs that consider sparsity in both weights and activation maps, and discussing hardware/software co-design and co-scheduling techniques that can lead to better optimization and utilization of the available hardware resources for CNN acceleration.
The first part of the book provides an overview of CNNs along with the composition and parameters of different contemporary CNN models. Later chapters focus on compressive coding for CNNs and the design of dense CNN accelerators. The book also provides directions for future research and development for CNN accelerators.
Other sample topics covered in Accelerators for Convolutional Neural Networks include:
- How to apply arithmetic coding and decoding with range scaling for lossless weight compression for 5-bit CNN weights to deploy CNNs in extremely resource-constrained systems
- State-of-the-art research surrounding dense CNN accelerators, which are mostly based on systolic arrays or parallel multiply-accumulate (MAC) arrays
- iMAC dense CNN accelerator, which combines image-to-column (im2col) and general matrix multiplication (GEMM) hardware acceleration
- Multi-threaded, low-cost, log-based processing element (PE) core, instances of which are stacked in a spatial grid to engender NeuroMAX dense accelerator
- Sparse-PE, a multi-threaded and flexible CNN PE core that exploits sparsity in both weights and activation maps, instances of which can be stacked in a spatial grid for engendering sparse CNN accelerators
For researchers in AI, computer vision, computer architecture, and embedded systems, along with graduate and senior undergraduate students in related programs of study, Accelerators for Convolutional Neural Networks is an essential resource to understanding the many facets of the subject and relevant applications.
商品描述(中文翻譯)
全面且深入的資源,探索不同類型的卷積神經網絡及其輔助加速器
卷積神經網絡的加速器提供基本的深度學習知識和指導內容,以建立針對物聯網(IoT)和邊緣計算從業者的卷積神經網絡(CNN)加速器,闡明CNN的壓縮編碼,提出一種兩步驟的無損輸入特徵圖壓縮方法,討論基於算術編碼的無損權重壓縮方法及其相關解碼方法的設計,描述當代考慮權重和激活圖稀疏性的稀疏CNN,並討論硬體/軟體共同設計和共同排程技術,以實現對CNN加速的可用硬體資源的更好優化和利用。
本書的第一部分提供了CNN的概述,以及不同當代CNN模型的組成和參數。後面的章節專注於CNN的壓縮編碼和密集CNN加速器的設計。本書還提供了未來CNN加速器研究和開發的方向。
卷積神經網絡的加速器中涵蓋的其他示例主題包括:
- 如何應用算術編碼和範圍縮放進行無損權重壓縮,以便在極度資源受限的系統中部署5位元CNN權重的CNN
- 圍繞密集CNN加速器的最先進研究,這些加速器主要基於脈衝陣列或並行乘加(MAC)陣列
- iMAC密集CNN加速器,結合了圖像到列(im2col)和通用矩陣乘法(GEMM)硬體加速
- 多執行緒、低成本的基於日誌的處理元件(PE)核心,其實例在空間網格中堆疊以形成NeuroMAX密集加速器
- Sparse-PE,一種多執行緒且靈活的CNN PE核心,利用權重和激活圖的稀疏性,其實例可以在空間網格中堆疊以形成稀疏CNN加速器
對於人工智慧、計算機視覺、計算機架構和嵌入式系統的研究人員,以及相關學科的研究生和高年級本科生,卷積神經網絡的加速器是理解該主題及相關應用的必備資源。
作者簡介
ARSLAN MUNIR, PhD, is an Associate Professor in the Department of Computer Science of Kansas State University. He is also the Director of the Intelligent Systems, Computer Architecture, Analytics, and Security (ISCAAS) Laboratory at the university.
JOONHO KONG, PhD, is an Associate Professor in the School of Electronics Engineering College of IT Engineering at Kyungpook National University, South Korea.
MAHMOOD AZHAR QURESHI, PhD, is a Senior IP Logic Design Engineer at Intel Corporation in Santa Clara, California.
作者簡介(中文翻譯)
阿爾斯蘭·穆尼爾 (ARSLAN MUNIR), PhD, 是堪薩斯州立大學計算機科學系的副教授。他同時也是該大學智能系統、計算機架構、分析與安全 (ISCAAS) 實驗室的主任。
孔俊浩 (JOONHO KONG), PhD, 是韓國慶北國立大學資訊工程學院電子工程學系的副教授。
馬哈茂德·阿扎爾·庫雷希 (MAHMOOD AZHAR QURESHI), PhD, 是位於加利福尼亞州聖克拉拉的英特爾公司資深IP邏輯設計工程師。