LLM from Scratch: A Comprehensive Guide to Building and Applying Large Language Models

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-06-07
  • 售價: $1,020
  • 貴賓價: 9.5$969
  • 語言: 英文
  • 頁數: 70
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798327835900
  • ISBN-13: 9798327835900
  • 相關分類: LangChainScratch
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

"LLM from Scratch" is an extensive guide designed to take readers from the basics to advanced concepts of large language models (LLMs). It provides a thorough understanding of the theoretical foundations, practical implementation, and real-world applications of LLMs, catering to both beginners and experienced practitioners.

Part I: Foundations

The book begins with an introduction to language models, detailing their history, evolution, and wide-ranging applications. It covers essential mathematical and theoretical concepts, including probability, statistics, information theory, and linear algebra. Fundamental machine learning principles are also discussed, setting the stage for more complex topics. The basics of Natural Language Processing (NLP) are introduced, covering text preprocessing, tokenization, embeddings, and common NLP tasks.

Part II: Building Blocks

This section delves into the core components of deep learning and neural networks. It explains various architectures, such as Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data, including Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs). The concept of attention mechanisms, especially self-attention and scaled dot-product attention, is explored, highlighting their importance in modern NLP models.

Part III: Transformer Models

The book provides a detailed examination of the Transformer architecture, which has revolutionized NLP. It covers the encoder-decoder framework, multi-head attention, and the building blocks of transformers. Practical aspects of training transformers, including data preparation, training techniques, and evaluation metrics, are discussed. Advanced transformer variants like BERT, GPT, and others are also reviewed, showcasing their unique features and applications.

Part IV: Practical Implementation

Readers are guided through setting up their development environment, including the necessary tools and libraries. Detailed instructions for implementing a simple language model, along with a step-by-step code walkthrough, are provided. Techniques for fine-tuning pre-trained models using transfer learning are explained, supported by case studies and practical examples.

Part V: Applications and Future Directions

The book concludes with real-world applications of LLMs across various industries, including healthcare, finance, and retail. Ethical considerations and challenges in deploying LLMs are addressed. Advanced topics such as model compression, zero-shot learning, and future research trends are explored, offering insights into the ongoing evolution of language models.

"LLM from Scratch" is an indispensable resource for anyone looking to master the intricacies of large language models and leverage their power in practical applications.

商品描述(中文翻譯)

《從零開始的LLM》是一本全面的指南,旨在引導讀者從大型語言模型(LLMs)的基本概念到進階知識。它提供了對LLMs的理論基礎、實際實施和現實應用的深入理解,適合初學者和有經驗的從業者。

第一部分:基礎
本書首先介紹語言模型,詳細說明其歷史、演變及廣泛應用。涵蓋了基本的數學和理論概念,包括概率、統計、信息理論和線性代數。還討論了基本的機器學習原則,為更複雜的主題奠定基礎。介紹了自然語言處理(NLP)的基本知識,包括文本預處理、標記化、嵌入和常見的NLP任務。

第二部分:構建模塊
本部分深入探討深度學習和神經網絡的核心組件。解釋了各種架構,例如用於圖像數據的卷積神經網絡(CNNs)和用於序列數據的遞歸神經網絡(RNNs),包括長短期記憶(LSTM)網絡和門控遞歸單元(GRUs)。探討了注意力機制的概念,特別是自注意力和縮放點積注意力,強調它們在現代NLP模型中的重要性。

第三部分:Transformer模型
本書詳細檢視了Transformer架構,這一架構徹底改變了NLP。涵蓋了編碼器-解碼器框架、多頭注意力和Transformer的基本組件。討論了訓練Transformer的實際方面,包括數據準備、訓練技術和評估指標。還回顧了BERT、GPT等先進的Transformer變體,展示了它們的獨特特徵和應用。

第四部分:實際實施
讀者將獲得設置開發環境的指導,包括必要的工具和庫。提供了實現簡單語言模型的詳細說明,並附有逐步的代碼演示。解釋了使用遷移學習對預訓練模型進行微調的技術,並以案例研究和實際示例作為支持。

第五部分:應用與未來方向
本書以LLMs在各行各業的現實應用作結尾,包括醫療、金融和零售。討論了部署LLMs的倫理考量和挑戰。探討了模型壓縮、零樣本學習和未來研究趨勢等進階主題,提供了對語言模型持續演變的見解。

《從零開始的LLM》是任何希望掌握大型語言模型複雜性並在實際應用中利用其力量的人的必備資源。