Prominent Feature Extraction for Sentiment Analysis (Socio-Affective Computing)
暫譯: 情感分析的顯著特徵提取(社會情感計算)
Basant Agarwal, Namita Mittal
- 出版商: Springer
- 出版日期: 2015-12-18
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 103
- 裝訂: Hardcover
- ISBN: 3319253417
- ISBN-13: 9783319253411
海外代購書籍(需單獨結帳)
相關主題
商品描述
The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model.
Authors pay attention to the four main findings of the book :
-Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features.
- Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis.
- The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis.
商品描述(中文翻譯)
本專著的目標是通過結合語義、句法和常識知識來提高情感分析模型的性能。本書提出了一種新穎的語義概念提取方法,利用單詞之間的依賴關係從文本中提取特徵。所提出的方法結合了語義和常識知識,以便更好地理解文本。此外,本書旨在通過消除噪音、不相關和冗餘特徵,從非結構化文本中提取顯著特徵。讀者還將發現一種高效的降維方法,以緩解機器學習模型面臨的數據稀疏問題。
作者關注本書的四個主要發現:
- 通過減少特徵之間的冗餘,可以提高情感分析的性能。實驗結果顯示,最小冗餘最大相關性(mRMR)特徵選擇技術通過消除冗餘特徵來提高情感分析的性能。
- 使用mRMR特徵選擇技術的布林多項式朴素貝葉斯(BMNB)機器學習算法在情感分析中表現優於支持向量機(SVM)分類器。
- 通過對特徵進行語義聚類來緩解數據稀疏問題,這反過來又提高了情感分析的性能。
- 文本中單詞之間的語義關係為情感分析提供了有用的線索。以ConceptNet本體形式的常識知識獲取知識,這提供了對文本的更好理解,從而提高情感分析的性能。