Natural Language Processing for the Semantic Web (Synthesis Lectures on the Semantic Web: Theory and Technology)
暫譯: 語意網的自然語言處理(語意網:理論與技術綜合講座)

Diana Maynard, Kalina Bontcheva

  • 出版商: Morgan & Claypool
  • 出版日期: 2016-12-13
  • 售價: $2,730
  • 貴賓價: 9.5$2,594
  • 語言: 英文
  • 頁數: 196
  • 裝訂: Paperback
  • ISBN: 1627059091
  • ISBN-13: 9781627059091
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book introduces core natural language processing (NLP) technologies to non-experts in an easily accessible way, as a series of building blocks that lead the user to understand key technologies, why they are required, and how to integrate them into Semantic Web applications. Natural language processing and Semantic Web technologies have different, but complementary roles in data management. Combining these two technologies enables structured and unstructured data to merge seamlessly. Semantic Web technologies aim to convert unstructured data to meaningful representations, which benefit enormously from the use of NLP technologies, thereby enabling applications such as connecting text to Linked Open Data, connecting texts to each other, semantic searching, information visualization, and modeling of user behavior in online networks.

The first half of this book describes the basic NLP processing tools: tokenization, part-of-speech tagging, and morphological analysis, in addition to the main tools required for an information extraction system (named entity recognition and relation extraction) which build on these components. The second half of the book explains how Semantic Web and NLP technologies can enhance each other, for example via semantic annotation, ontology linking, and population. These chapters also discuss sentiment analysis, a key component in making sense of textual data, and the difficulties of performing NLP on social media, as well as some proposed solutions. The book finishes by investigating some applications of these tools, focusing on semantic search and visualization, modeling user behavior, and an outlook on the future.

商品描述(中文翻譯)

本書以易於理解的方式向非專家介紹核心自然語言處理(NLP)技術,將其視為一系列構建模塊,幫助讀者理解關鍵技術、為何需要這些技術,以及如何將其整合到語義網應用中。自然語言處理和語義網技術在數據管理中扮演著不同但互補的角色。結合這兩種技術可以無縫地融合結構化和非結構化數據。語義網技術旨在將非結構化數據轉換為有意義的表示,這在使用NLP技術時獲益匪淺,從而實現如將文本連接到開放鏈接數據、文本之間的連接、語義搜索、信息可視化以及在線網絡中用戶行為建模等應用。

本書的前半部分描述了基本的NLP處理工具:分詞、詞性標註和形態分析,此外還介紹了信息提取系統所需的主要工具(命名實體識別和關係提取),這些工具建立在上述組件之上。本書的後半部分解釋了語義網和NLP技術如何相互增強,例如通過語義註釋、本體鏈接和人口統計。這些章節還討論了情感分析,這是理解文本數據的關鍵組件,以及在社交媒體上進行NLP的困難和一些提出的解決方案。本書最後探討了這些工具的一些應用,重點關注語義搜索和可視化、用戶行為建模,以及對未來的展望。