Fixed Point Theory in Distance Spaces
暫譯: 距離空間中的不動點理論

William Kirk, Naseer Shahzad

  • 出版商: Springer
  • 出版日期: 2014-11-07
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 173
  • 裝訂: Hardcover
  • ISBN: 331910926X
  • ISBN-13: 9783319109268
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This is a monograph on fixed point theory, covering the purely metric aspects of the theory–particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler’s well known set-valued extension of that theorem, the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi’s theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.

商品描述(中文翻譯)

這是一本關於不動點理論的專著,涵蓋了該理論的純度量方面,特別是那些不依賴於基礎空間任何代數結構的結果。傳統上,大量的度量不動點理論都是在函數分析框架下進行的。這一方面的理論已經被廣泛討論。通常用來檢查度量擴展的有四個經典不動點定理,分別是:Banach 收縮映射原理、Nadler 的著名集合值擴展定理、Banach 定理對非擴張映射的擴展,以及 Caristi 定理。這些比較構成了本書的一個重要組成部分。本書分為三個部分。第一部分包含一些純度量理論的方面,特別是 Caristi 定理及其眾多擴展中的幾個。還討論了非擴張映射,並從邏輯基礎的角度進行了分析。第一部分還包含在超凸度量空間和超度量空間中的某些結果。第二部分處理具有度量結構的空間類別中的不動點理論,這些空間還具有幾何結構。這些特別包括測地空間、長度空間和 CAT(0) 空間。第三部分專注於不一定是度量的距離空間。這些包括某些距離空間,這些空間嚴格位於半度量空間類別和度量空間類別之間,因為它們滿足三角不等式的放鬆版本,以及其他距離性質不完全滿足度量公理的空間。