Visualizing Quaternions
Andrew J. Hanson
- 出版商: Morgan Kaufmann
- 出版日期: 2005-12-29
- 售價: $3,740
- 貴賓價: 9.5 折 $3,553
- 語言: 英文
- 頁數: 530
- 裝訂: Hardcover
- ISBN: 0120884003
- ISBN-13: 9780120884001
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$620$490 -
$780CMMI: Guidelines for Process Integration and Product Improvement (Harcover)
-
$580$568 -
$2,330$2,214 -
$299$254 -
$299$254 -
$199$179 -
$350$277 -
$550$435 -
$520$442 -
$390$332 -
$790$672 -
$890$757 -
$780$741 -
$780$702 -
$660$561 -
$580$493 -
$450$351 -
$650$507 -
$450$356 -
$780$616 -
$720$569 -
$490$417 -
$680$578 -
$550$468
相關主題
商品描述
Description
Table Of ContentsIntroduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.
The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions.
ABOUT THE AUTHOR
FOREWORD by Steve
Cunningham
PREFACE
ACKNOWLEDGMENTS
PART I ELEMENTS OF QUATERNIONS
- 01 THE DISCOVERY OF QUATERNIONS
- 1.1 Hamilton's Walk
1.2 Then Came Octonions
1.3 The Quaternion Revival
- 2.1 The Belt Trick
2.2 The Rolling Ball
2.3 The Apollo 10 Gimbal-lock Incident
2.4 3D Game Developer's Nightmare
2.5 The Urban Legend of the Upside-down F16
2.6 Quaternions to the Rescue
- 3.1 Vectors
3.2 Length of a Vector
3.3 3D Dot Product
3.4 3D Cross Product
3.5 Unit Vectors
3.6 Spheres
3.7 Matrices
3.8 Complex Numbers
05 ROAD MAP TO QUATERNION VISUALIZATION
- 5.1 The Complex Number Connection
5.2 The Cornerstones of Quaternion Visualization
- 6.1 2D Rotations
- 6.1.1 Relation to Complex Numbers
6.1.2 The Half-angle Form
6.1.3 Complex Exponential Version
- 6.2.1 Construction
6.2.2 Quaternions and Half Angles
6.2.3 Double Values
6.4 Euler Angles and Quaternions
6.5 † Optional Remarks
- 6.5.1 † Connections to Group Theory
6.5.2 † "Pure" Quaternion Derivation
6.5.3 † Quaternion Exponential Version
- 7.1 Algebra of Complex Numbers
- 7.1.1 Complex Numbers
7.1.2 Abstract View of Complex Multiplication
7.1.3 Restriction to Unit-length Case
- 7.2.1 The Multiplication Rule
7.2.2 Scalar Product
7.2.3 Modulus of the Quaternion Product
7.2.4 Preservation of the Unit Quaternions
- 8.1 2D: Visualizing an Edge-on Circle
- 8.1.1 Trigonometric Function Method
8.1.2 Complex Variable Method
8.1.3 Square Root Method
8.3 3D: Visualizing a Balloon
- 8.3.1 Trigonometric Function Method
8.3.2 Square Root Method
- 8.4.1 Seeing the Parameters of a Single Quaternion
8.4.2 Hemispheres in S3
- 9.1 Complex Numbers
9.2 Quaternions
- 10.1 Basics of Interpolation
- 10.1.1 Interpolation Issues
10.1.2 Gram-Schmidt Derivation of the SLERP
10.1.3 † Alternative Derivation
10.3 Equivalent 3×3 Matrix Method
- 11.1 A Single Quaternion Frame
11.2 Several Isolated Frames
11.3 A Rotating Frame Sequence
11.4 Synopsis
- 12.1 Very Interesting, but Why?
- 12.1.1 The Intuitive Answer
12.1.2 † The Technical Answer
12.3 Frame-sequence Visualization Methods
- 12.3.1 One Rotation
12.3.2 Two Rotations
12.3.3 Synopsis
- 13.1 Order Dependence
13.2 The Rolling Ball Controller
13.3 Rolling Ball Quaternions
13.4 † Commutators
13.5 Three Degrees of Freedom From Two
- 14.1 Guidance System Suspension
14.2 Mathematical Interpolation Singularities
14.3 Quaternion Viewpoint
PART II ADVANCED QUATERNION TOPICS
- 15 ALTERNATIVE WAYS OF WRITING QUATERNIONS
- 15.1 Hamilton's Generalization of Complex Numbers
15.2 Pauli Matrices
15.3 Other Matrix Forms
- 16.1 Extracting a Quaternion
- 16.1.1 Positive Trace R
16.1.2 Nonpositive Trace R
- 17 ADVANCED SPHERE VISUALIZATION
- 17.1 Projective Method
- 17.1.1 The Circle S1
17.1.2 General SN Polar Projection
- 17.2.1 Unroll-and-Flatten S1
17.2.2 S2 Flattened Equal-area Method
17.2.3 S3 Flattened Equal-volume Method
- 18 MORE ON LOGARITHMS AND EXPONENTIALS
- 18.1 2D Rotations
18.2 3D Rotations
18.3 Using Logarithms for Quaternion Calculus
18.4 Quaternion Interpolations Versus Log
- 19 TWO-DIMENSIONAL CURVES
- 19.1 Orientation Frames for 2D Space Curves
- 19.1.1 2D Rotation Matrices
19.1.2 The Frame Matrix in 2D
19.1.3 Frame Evolution in 2D
19.3 Tangent and Normal Maps
19.4 Square Root Form
- 19.4.1 Frame Evolution in (a, b)
19.4.2 Simplifying the Frame Equations
- 20 THREE-DIMENSIONAL CURVES
- 20.1 Introduction to 3D Space Curves
20.2 General Curve Framings in 3D
20.3 Tubing
20.4 Classical Frames
- 20.4.1 Frenet-Serret Frame
20.4.2 Parallel Transport Frame
20.4.3 Geodesic Reference Frame
20.4.4 General Frames
20.6 Theory of Quaternion Frames
- 20.6.1 Generic Quaternion Frame Equations
20.6.2 Quaternion Frenet Frames
20.6.3 Quaternion Parallel Transport Frames
- 20.7.1 Assigning Quaternions to Frenet Frames
20.7.2 Assigning Quaternions to Parallel Transport Frames
20.9 Comparison of Quaternion Frame Curve Lengths
- 21 3D SURFACES
- 21.1 Introduction to 3D Surfaces
- 21.1.1 Classical Gauss Map
21.1.2 Surface Frame Evolution
21.1.3 Examples of Surface Framings
- 21.2.1 Quaternion Frame Equations
21.2.2 Quaternion Surface Equations (Weingarten Equations)
21.4 Example: The Sphere
- 21.4.1 Quaternion Maps of Alternative Sphere Frames
21.4.2 Covering the Sphere and the Geodesic Reference Frame South Pole Singularity
- 22 OPTIMAL QUATERNION FRAMES
- 22.1 Background
22.2 Motivation
22.3 Methodology
- 22.3.1 The Space of Possible Frames
22.3.2 Parallel Transport and Minimal Measure
- 22.4.1 Full Space of Curve Frames
22.4.2 Full Space of Surface Maps
- 22.5.1 Optimal Path Choice Strategies
22.5.2 General Remarks on Optimization in Quaternion Space
- 22.6.1 Minimal Quaternion Frames for Space Curves
22.6.2 Minimal-quaternion-area Surface Patch Framings
- 23 QUATERNION VOLUMES
- 23.1 Three-degree-of-freedom Orientation Domains
23.2 Application to the Shoulder Joint
23.3 Data Acquisition and the Double-covering Problem
- 23.3.1 Sequential Data
23.3.2 The Sequential Nearest-neighbor Algorithm
23.3.3 The Surface-based Nearest-neighbor Algorithm
23.3.4 The Volume-based Nearest-neighbor Algorithm
- 24 QUATERNION MAPS OF STREAMLINES
- 24.1 Visualization Methods
- 24.1.1 Direct Plot of Quaternion Frame Fields
24.1.2 Similarity Measures for Quaternion Frames
24.1.3 Exploiting or Ignoring Double Points
- 24.2.1 AVS Streamline Example
24.2.2 Deforming Solid Example
24.4 Advanced Visualization Approaches
- 24.4.1 3D Rotations of Quaternion Displays
24.4.2 Probing Quaternion Frames with 4D Light
- 25 QUATERNION INTERPOLATION
- 25.1 Concepts of Euclidean Linear Interpolation
- 25.1.1 Constructing Higher-order Polynomial Splines
25.1.2 Matching
25.1.3 Schlag's Method
25.1.4 Control-point Method
25.3 Direct Interpolation of 3D Rotations
- 25.3.1 Relation to Quaternions
25.3.2 Method for Arbitrary Origin
25.3.3 Exponential Version
25.3.4 Special Vector-Vector Case
25.3.5 Multiple-level Interpolation Matrices
25.3.6 Equivalence of Quaternion and Matrix Forms
25.5 Quaternion de Casteljau Splines
25.6 Equivalent Anchor Points
25.7 Angular Velocity Control
25.8 Exponential-map Quaternion Interpolation
25.9 Global Minimal Acceleration Method
- 25.9.1 Why a Cubic?
25.9.2 Extension to Quaternion Form
- 26 QUATERNION ROTATOR DYNAMICS
- 26.1 Static Frame
26.2 Torque
26.3 Quaternion Angular Momentum
- 27 CONCEPTS OF THE ROTATION GROUP
- 27.1 Brief Introduction to Group Representations
- 27.1.1 Complex Versus Real
27.1.2 What Is a Representation?
- 27.2.1 Representations and Rotation-invariant Properties
27.2.2 Properties of Expansion Coefficients Under Rotations
- 28 SPHERICAL RIEMANNIAN GEOMETRY
- 28.1 Induced Metric on the Sphere
28.2 Induced Metrics of Spheres
- 28.2.1 S1 Induced Metrics
28.2.2 S2 Induced Metrics
28.2.3 S3 Induced Metrics
28.2.4 Toroidal Coordinates on S3
28.2.5 Axis-angle Coordinates on S3
28.2.6 General Form for the Square-root Induced Metric
28.4 Riemann Curvature of Spheres
- 28.4.1 S1
28.4.2 S2
28.4.3 S3
28.6 Embedded-vector Viewpoint of the Geodesics
PART III BEYOND QUATERNIONS
- 29 THE RELATIONSHIP OF 4D ROTATIONS TO QUATERNIONS
- 29.1 What Happened in Three Dimensions
29.2 Quaternions and Four Dimensions
- 30 QUATERNIONS AND THE FOUR DIVISION ALGEBRAS
- 30.1 Division Algebras
- 30.1.1 The Number Systems with Dimensions 1, 2, 4, and 8
30.1.2 Parallelizable Spheres
30.3 Constructing the Hopf Fibrations
- 30.3.1 Real: S0 fiber + S1 base
= S1 bundle
30.3.2 Complex: S1 fiber + S2 base = S3 bundle
30.3.3 Quaternion: S3 fiber + S4 base = S7 bundle
30.3.4 Octonion: S7 fiber + S8 base = S15 bundle
- 31 CLIFFORD ALGEBRAS
- 31.1 Introduction to Clifford Algebras
31.2 Foundations
- 31.2.1 Clifford Algebras and Rotations
31.2.2 Higher-dimensional Clifford Algebra Rotations
- 31.3.1 1D Clifford Algebra
31.3.2 2D Clifford Algebra
31.3.3 2D Rotations Done Right
31.3.4 3D Clifford Algebra
31.3.5 Clifford Implementation of 3D Rotations
31.5 Pin(N), Spin(N), O(N), SO(N), and All That. . .
- 32 CONCLUSIONS
- APPENDICES
- A NOTATION
A.1 Vectors
A.2 Length of a Vector
A.3 Unit Vectors
A.4 Polar Coordinates
A.5 Spheres
A.6 Matrix Transformations
A.7 Features of Square Matrices
A.8 Orthogonal Matrices
A.9 Vector Products
- A.9.1 2D Dot Product
A.9.2 2D Cross Product
A.9.3 3D Dot Product
A.9.4 3D Cross Product
- B 2D COMPLEX FRAMES
- C 3D QUATERNION FRAMES
- C.1 Unit Norm
C.2 Multiplication Rule
C.3 Mapping to 3D rotations
C.4 Rotation Correspondence
C.5 Quaternion Exponential Form
- D FRAME AND SURFACE EVOLUTION
- D.1 Quaternion Frame Evolution
D.2 Quaternion Surface Evolution
- E QUATERNION SURVIVAL KIT
- F QUATERNION METHODS
- F.1 Quaternion Logarithms and Exponentials
F.2 The Quaternion Square Root Trick
F.3 The a → b formula simplified
F.4 Gram-Schmidt Spherical Interpolation
F.5 Direct Solution for Spherical Interpolation
F.6 Converting Linear Algebra to Quaternion Algebra
F.7 Useful Tensor Methods and Identities
- F.7.1 Einstein Summation Convention
F.7.2 Kronecker Delta
F.7.3 Levi-Civita Symbol
- G QUATERNION PATH OPTIMIZATION USING SURFACE EVOLVER
- H QUATERNION FRAME INTEGRATION
- I HYPERSPHERICAL GEOMETRY
- I.1 Definitions
I.2 Metric Properties
- REFERENCES
- INDEX
商品描述(中文翻譯)
描述
四元數於160年前被引入,旨在將複數推廣至更高維度,現在已被認為是現代電腦圖形學中最重要的概念之一。它們提供了一種強大的方式來表示旋轉,與旋轉矩陣相比,四元數使用更少的記憶體,組合速度更快,並且自然適合於高效的旋轉插值。儘管如此,許多從業者因為理解四元數所需的數學而避免使用它們,希望有一天能有更直觀的描述出現。
等待已經結束。Andrew Hanson的新書為四元數提供了一個全新的視角。書的第一部分專注於可視化四元數,以提供使用它們所需的直覺,並包含許多示例來說明它們的重要性——這是對那些希望探索四元數而不受數學方面困擾的讀者的美好介紹。第二部分涵蓋了所有重要的進階應用,包括四元數曲線、表面和體積。最後,對於那些想要了解四元數背後數學的完整故事的讀者,書中也有對其四維特性和Clifford Algebras的溫和介紹,這是向量和四元數的全方位框架。
目錄
關於作者
前言 由 Steve Cunningham
序言
致謝
第一部分 四元數的元素
01 四元數的發現
1.1 哈密頓的步行
1.2 然後出現了八元數
1.3 四元數的復興
02 旋轉的民間傳說
2.1 腰帶把戲
2.2 滾動的球
2.3 阿波羅10號的萬向節鎖定事件
2.4 3D遊戲開發者的噩夢
2.5 倒置F16的都市傳說
2.6 四元數的救援
03 基本符號
3.1 向量
3.2 向量的長度
3.3 3D點積
3.4 3D叉積
3.5 單位向量
3.6 球體
3.7 矩陣
3.8 複數
04 四元數是什麼?
05 四元數可視化的路線圖
5.1 複數的連結
5.2 四元數可視化的基石
06 旋轉的基本原理
6.1 2D旋轉
6.1.1 與複數的關係
6.1.2 半角形式
6.1.3 複數指數版本
6.2 四元數與3D旋轉
6.2.1 構造
6.2.2 四元數與半角
6.2.3 雙值
6.3 恢復Θ和n
6.4 歐拉角與四元數
6.5 其他備註
6.5.1 與群論的連結
6.5.2 '純'四元數推導
6.5.3 四元數指數版本
6.6 結論
07 可視化代數結構
7.1 複數的代數
7.1.1 複數
7.1.2 複數乘法的抽象視圖
7.1.3 限制於單位長度情況
7.2 四元數代數
7.2.1 乘法規則
7.2.2 標量乘積
7.2.3 四元數乘積的模
7.2.4 單位四元數的保持
08 可視化球體
8.1 2D:可視化邊緣圓
8.1.1 三角函數方法