An Integrated Introduction to Computer Graphics and Geometric Modeling (Hardcover)
Ronald Goldman
- 出版商: CRC
- 出版日期: 2009-07-01
- 售價: $4,810
- 貴賓價: 9.5 折 $4,570
- 語言: 英文
- 頁數: 574
- 裝訂: Hardcover
- ISBN: 143980334X
- ISBN-13: 9781439803349
-
相關分類:
Computer Graphics
-
其他版本:
An Integrated Introduction to Computer Graphics and Geometric Modeling (Paperback)
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,280Working Effectively with Legacy Code (Paperback)
-
$520$494 -
$1,380$1,352 -
$550$495 -
$738Digital Image Processing, 3/e (IE-Paperback)
-
$460$359 -
$680$537 -
$1,127Introduction to Autonomous Mobile Robots, 2/e (Hardcover)
-
$1,300$1,274 -
$990Scala for the Impatient (Paperback)
-
$620$490 -
$680$537 -
$980$833 -
$380$296 -
$360$284 -
$653C++ Primer, 5/e (簡體中文版)
-
$300$270 -
$1,050$1,029 -
$480$379 -
$780$616 -
$490$441 -
$1,333Image Processing, Analysis, and Machine Vision, 4/e (IE-Paperback)
-
$560$437 -
$360$252 -
$500$395
相關主題
商品描述
Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with fractals, rather than the typical line-drawing algorithms found in many standard texts. He also brings the turtle back from obscurity to introduce several major concepts in computer graphics.
Supplying the mathematical foundations, the book covers linear algebra topics, such as vector geometry and algebra, affine and projective spaces, affine maps, projective transformations, matrices, and quaternions. The main graphics areas explored include reflection and refraction, recursive ray tracing, radiosity, illumination models, polygon shading, and hidden surface procedures. The book also discusses geometric modeling, including planes, polygons, spheres, quadrics, algebraic and parametric curves and surfaces, constructive solid geometry, boundary files, octrees, interpolation, approximation, Bezier and B-spline methods, fractal algorithms, and subdivision techniques.
Making the material accessible and relevant for years to come, the text avoids descriptions of current graphics hardware and special programming languages. Instead, it presents graphics algorithms based on well-established physical models of light and cogent mathematical methods.