Agentic Design Patterns: A Hands-On Guide to Building Intelligent Systems
暫譯: 代理設計模式:構建智能系統的實用指南

Gullí, Antonio

  • 出版商: Springer
  • 出版日期: 2025-10-31
  • 售價: $2,370
  • 貴賓價: 9.5$2,252
  • 語言: 英文
  • 頁數: 427
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3032014018
  • ISBN-13: 9783032014016
  • 相關分類: Design Pattern
  • 海外代購書籍(需單獨結帳)

商品描述

This book is a practical resource designed to help developers master the art of building sophisticated AI agents. As artificial intelligence evolves from simple reactive programs to autonomous entities capable of understanding context and making complex decisions, this book provides the essential Design Patterns and proven techniques needed to construct intelligent systems effectively. Each of the 21 Design Patterns represents a fundamental building block for creating agents that can perceive their environment, make informed decisions, and execute actions autonomously.

Agentic Design Patterns: A Hands-On Guide to Building Intelligent Systems is structured as a comprehensive hands-on guide, with each chapter dedicated to a single agentic pattern. Within each chapter, you will find a detailed pattern overview, practical applications and use cases, one or more hands-on code example, and key takeaways for quick review. From foundational concepts such as Prompt Chaining and Tool Use to advanced topics like Multi-Agent Collaboration and Self-Correction, readers will gain practical knowledge they can immediately apply. While the chapters build on each other, you can also use the book as a handy reference, jumping to patterns that address your specific challenges.

To provide a tangible "canvas" for the code examples, this guide utilizes three prominent agent development frameworks: LangChain and its extension LangGraph, which offer a flexible way to build complex operational sequences; Crew AI, which provides a structured framework for orchestrating multiple agents; and the Google Agent Developer Kit (Google ADK), which offers tools for building, evaluating, and deploying agents. By showcasing examples across these tools, you will gain a broad understanding of how these patterns can be applied in any technical environment.

Building effective agentic systems requires more than just a powerful language model; it demands structure and design. Agentic patterns provide reusable, battle-tested solutions to common challenges, much like design patterns in software engineering. They offer a common language that makes an agent's logic clearer, more maintainable, and more robust. By the end of this journey, you will possess both the theoretical understanding and the practical skills to implement these 21 essential patterns, enabling you to build more intelligent, capable, and autonomous systems on your chosen development canvas.

商品描述(中文翻譯)

本書是一個實用資源,旨在幫助開發者掌握構建複雜 AI 代理的藝術。隨著人工智慧從簡單的反應式程式演變為能夠理解上下文並做出複雜決策的自主實體,本書提供了構建智能系統所需的基本設計模式和經過驗證的技術。21 種設計模式中的每一種都代表了創建能夠感知其環境、做出明智決策並自主執行行動的代理的基本構建塊。

《Agentic Design Patterns: A Hands-On Guide to Building Intelligent Systems》結構為一個全面的實作指南,每一章專注於一個單一的代理模式。在每一章中,您將找到詳細的模式概述、實際應用和使用案例、一個或多個實作代碼範例,以及快速回顧的關鍵要點。從基礎概念如 Prompt Chaining 和 Tool Use,到進階主題如 Multi-Agent Collaboration 和 Self-Correction,讀者將獲得可以立即應用的實用知識。雖然各章節相互關聯,但您也可以將本書作為方便的參考,直接跳到解決您特定挑戰的模式。

為了提供一個具體的「畫布」來展示代碼範例,本指南利用了三個突出的代理開發框架:LangChain 及其擴展 LangGraph,提供了一種靈活的方式來構建複雜的操作序列;Crew AI,提供了一個結構化的框架來協調多個代理;以及 Google Agent Developer Kit (Google ADK),提供了構建、評估和部署代理的工具。通過展示這些工具中的範例,您將對這些模式如何在任何技術環境中應用有更廣泛的理解。

構建有效的代理系統不僅僅需要強大的語言模型;它需要結構和設計。代理模式提供了可重用的、經過實戰考驗的解決方案來應對常見挑戰,類似於軟體工程中的設計模式。它們提供了一種共同語言,使代理的邏輯更清晰、更易於維護且更穩健。在這段旅程結束時,您將擁有理論理解和實踐技能,以實施這 21 種基本模式,使您能夠在選擇的開發畫布上構建更智能、更有能力和更自主的系統。

作者簡介

Antonio Gulli is a highly experienced Senior Director at Google, currently leading the Engineer Director role in the Office of CTO. With over 30 years of relevant experience, Antonio is a well-known figure in the industry, with a strong background in AI, Search, and Cloud technologies. Antonio has extensive experience managing technical teams and providing Google Cloud technology solutions across EMEA industry. He has previously served as Site Lead and Engineering Director for Google, where he managed cloud teams and led cross-functional teams in strong collaboration with international sites and sales functions. Antonio has also authored the book "Deep Learning for Keras" to increase science culture awareness. Antonio's educational background is impressive, with a Ph.D. in Computer Science from the University of Pisa and a Master's degree in Engineering from the same university. He also holds a Master's degree in Practice Engineering from the University of Pisa and a Bachelor's degree in Computer Science from the University of Pisa. Antonio's technical expertise includes Senior Software Engineer, AI, Search, Cloud Kubernetes, Keras, and Deep Learning. He is also a Board Member and VC Advisor, making him a valuable asset to any organization.

作者簡介(中文翻譯)

安東尼奧·古利是谷歌的一位資深總監,擁有豐富的經驗,目前在首席技術官辦公室擔任工程總監一職。安東尼奧在相關領域擁有超過30年的經驗,是業界知名人物,擁有強大的人工智慧、搜尋和雲端技術背景。安東尼奧在管理技術團隊和提供谷歌雲端技術解決方案方面擁有豐富的經驗,特別是在歐洲、中東和非洲(EMEA)地區。他曾擔任谷歌的現場負責人和工程總監,負責管理雲端團隊,並與國際站點和銷售部門進行強有力的跨功能團隊合作。安東尼奧還撰寫了《Keras深度學習》一書,以提高科學文化的認識。安東尼奧的教育背景令人印象深刻,他在比薩大學獲得計算機科學博士學位,並在同一所大學獲得工程碩士學位。他還擁有比薩大學的實踐工程碩士學位,以及比薩大學的計算機科學學士學位。安東尼奧的技術專長包括資深軟體工程師、人工智慧、搜尋、雲端 Kubernetes、Keras 和深度學習。他還擔任董事會成員和風險投資顧問,對任何組織來說都是一個寶貴的資產。