Generative AI with LangChain : Build production-ready LLM applications and advanced agents using Python, LangChain, and LangGraph, 2/e (Paperback)
暫譯: 使用 LangChain 的生成式 AI:使用 Python、LangChain 和 LangGraph 構建生產就緒的 LLM 應用程序和高級代理,第二版(平裝本)
Auffarth, Ben, Kuligin, Leonid
- 出版商: Packt Publishing
- 出版日期: 2025-05-23
- 售價: $2,120
- 貴賓價: 9.5 折 $2,014
- 語言: 英文
- 頁數: 476
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1837022011
- ISBN-13: 9781837022014
-
相關分類:
LangChain
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Using SQLite (Paperback)$2,100$1,995 -
ASP.NET 本質論$520$442 -
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback) -
$1,617Deep Learning (Hardcover) -
$857深度學習 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
$534JSON 實戰 -
$2,682Pattern Recognition and Machine Learning (Paperback) -
$1,663GANs in Action: Deep learning with Generative Adversarial Networks (Paperback) -
手機攝影必學 BOOK:用OX帶你學會拍人物、食物、風景等情境照片$398$299 -
創意競擇:從賈伯斯黃金年代的軟體設計機密流程,窺見蘋果的創意方法、本質與卓越關鍵$460$391 -
Web 開發者一定要懂的駭客攻防術 (Web Security for Developers: Real Threats, Practical Defense)$420$332 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$509 -
Martin Fowler 的企業級軟體架構模式:軟體重構教父傳授 51個模式,活用設計思考與架構決策 (Patterns of Enterprise Application Architecture)$800$624 -
我懂了!專案管理 (暢銷紀念版)$400$316 -
電腦視覺機器學習實務|建立端到端的影像機器學習 (Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images)$780$616 -
Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback)$2,185$2,070 -
$2,052ASP.NET Core Razor Pages in Action (Paperback) -
無瑕的程式碼 軟體工匠篇:程式設計師必須做到的紀律、標準與倫理 (Clean Craftsmanship: Disciplines, Standards, and Ethics)$720$562 -
Deep Reinforcement Learning Hands-On : A practical and easy-to-follow guide to RL from Q-learning and DQNs to PPO and RLHF, 3/e (Paperback)$2,060$1,957 -
$2,090Graph Neural Networks in Action (Paperback) -
從源頭就優化 - 動手開發自己的編譯器實戰$880$695 -
AI 工程|從基礎模型建構應用 (AI Engineering : Building Applications with Foundation Models)$1,200$948 -
UX 商業價值實現之道|打造成功的數位產品服務 (UX for Business: How to Design Valuable Digital Companies)$780$616 -
建構可擴展系統|設計分散式架構 (Foundations of Scalable Systems: Designing Distributed Architectures)$780$616
相關主題
商品描述
Go beyond foundational LangChain documentation with detailed coverage of LangGraph interfaces, design patterns for building AI agents, and scalable architectures used in production-ideal for Python developers building GenAI applications
Key Features:
- Bridge the gap between prototype and production with robust LangGraph agent architectures
- Apply enterprise-grade practices for testing, observability, and monitoring
- Build specialized agents for software development and data analysis
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
This second edition tackles the biggest challenge facing companies in AI today: moving from prototypes to production. Fully updated to reflect the latest developments in the LangChain ecosystem, it captures how modern AI systems are developed, deployed, and scaled in enterprise environments. This edition places a strong focus on multi-agent architectures, robust LangGraph workflows, and advanced retrieval-augmented generation (RAG) pipelines.
You'll explore design patterns for building agentic systems, with practical implementations of multi-agent setups for complex tasks. The book guides you through reasoning techniques such as Tree-of -Thoughts, structured generation, and agent handoffs-complete with error handling examples. Expanded chapters on testing, evaluation, and deployment address the demands of modern LLM applications, showing you how to design secure, compliant AI systems with built-in safeguards and responsible development principles. This edition also expands RAG coverage with guidance on hybrid search, re-ranking, and fact-checking pipelines to enhance output accuracy.
Whether you're extending existing workflows or architecting multi-agent systems from scratch, this book provides the technical depth and practical instruction needed to design LLM applications ready for success in production environments.
What You Will Learn:
- Design and implement multi-agent systems using LangGraph
- Implement testing strategies that identify issues before deployment
- Deploy observability and monitoring solutions for production environments
- Build agentic RAG systems with re-ranking capabilities
- Architect scalable, production-ready AI agents using LangGraph and MCP
- Work with the latest LLMs and providers like Google Gemini, Anthropic, Mistral, DeepSeek, and OpenAI's o3-mini
- Design secure, compliant AI systems aligned with modern ethical practices
Who this book is for:
This book is for developers, researchers, and anyone looking to learn more about LangChain and LangGraph. With a strong emphasis on enterprise deployment patterns, it's especially valuable for teams implementing LLM solutions at scale. While the first edition focused on individual developers, this updated edition expands its reach to support engineering teams and decision-makers working on enterprise-scale LLM strategies. A basic understanding of Python is required, and familiarity with machine learning will help you get the most out of this book.
Table of Contents
- The Rise of Generative AI: From Language Models to Agents
- First Steps with LangChain
- Building Workflows with LangGraph
- Building Intelligent RAG Systems with LangChain
- Building Intelligent Agents
- Advanced Applications and Multi-Agent Systems
- Software Development and Data Analysis Agents
- Evaluation and Testing
- Observability and Production Deployment
- The Future of LLM Applications
商品描述(中文翻譯)
超越基礎的 LangChain 文檔,詳細介紹 LangGraph 介面、構建 AI 代理的設計模式以及在生產中使用的可擴展架構,特別適合為 GenAI 應用程序開發的 Python 開發者
主要特點:
- 通過穩健的 LangGraph 代理架構縮短原型與生產之間的差距
- 應用企業級的測試、可觀察性和監控實踐
- 為軟體開發和數據分析構建專門的代理
- 購買印刷版或 Kindle 書籍包括免費 PDF 電子書
書籍描述:
本書第二版針對當前 AI 領域中公司面臨的最大挑戰:從原型轉向生產進行探討。全面更新以反映 LangChain 生態系統中的最新發展,捕捉現代 AI 系統在企業環境中的開發、部署和擴展方式。本版強調多代理架構、穩健的 LangGraph 工作流程以及先進的檢索增強生成(RAG)管道。
您將探索構建代理系統的設計模式,並實踐多代理設置以應對複雜任務。本書指導您使用推理技術,如思維樹(Tree-of-Thoughts)、結構化生成和代理交接,並附有錯誤處理示例。擴展的測試、評估和部署章節滿足現代 LLM 應用的需求,展示如何設計安全、合規的 AI 系統,並內建保護措施和負責任的開發原則。本版還擴展了 RAG 的內容,提供有關混合搜索、重新排序和事實檢查管道的指導,以提高輸出準確性。
無論您是擴展現有工作流程還是從零開始架構多代理系統,本書提供了設計 LLM 應用所需的技術深度和實用指導,助您在生產環境中取得成功。
您將學到的內容:
- 使用 LangGraph 設計和實現多代理系統
- 實施測試策略,以在部署前識別問題
- 部署生產環境的可觀察性和監控解決方案
- 構建具有重新排序能力的代理 RAG 系統
- 使用 LangGraph 和 MCP 架構可擴展的生產就緒 AI 代理
- 與最新的 LLM 和提供商(如 Google Gemini、Anthropic、Mistral、DeepSeek 和 OpenAI 的 o3-mini)合作
- 設計符合現代倫理實踐的安全、合規的 AI 系統
本書適合誰:
本書適合開發者、研究人員以及任何希望深入了解 LangChain 和 LangGraph 的人。由於強調企業部署模式,對於大規模實施 LLM 解決方案的團隊尤其有價值。雖然第一版專注於個別開發者,但這一更新版擴展了其覆蓋範圍,以支持在企業規模 LLM 策略上工作的工程團隊和決策者。需要具備基本的 Python 知識,熟悉機器學習將有助於您充分利用本書。
目錄
- 生成式 AI 的崛起:從語言模型到代理
- 與 LangChain 的第一步
- 使用 LangGraph 構建工作流程
- 使用 LangChain 構建智能 RAG 系統
- 構建智能代理
- 高級應用和多代理系統
- 軟體開發和數據分析代理
- 評估和測試
- 可觀察性和生產部署
- LLM 應用的未來