Getting Started with Google BERT: Build and train state-of-the-art natural language processing models using BERT (Paperback)
暫譯: 開始使用 Google BERT:使用 BERT 構建和訓練最先進的自然語言處理模型(平裝本)
Ravichandiran, Sudharsan
- 出版商: Packt Publishing
- 出版日期: 2021-01-22
- 售價: $1,590
- 貴賓價: 9.5 折 $1,511
- 語言: 英文
- 頁數: 352
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838821597
- ISBN-13: 9781838821593
-
相關分類:
Python、程式語言、Machine Learning、Text-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,363Programming Python, 4/e (Paperback)
-
$403Unity AR 增強現實完全自學教程 (全彩)
-
$580$458 -
$1,200$948 -
$520$411 -
$690$587 -
$407自然語言處理從入門到實戰
-
$480$379 -
$454區塊鏈技術進階與實戰, 2/e
-
$780$616 -
$980$774 -
$352TensorFlow + Keras 自然語言處理實戰
-
$3,760$3,572 -
$680$537 -
$880$695 -
$828$787 -
$1,188Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques (Paperback)
-
$880$695 -
$454自然語言處理 NLP 從入門到項目實戰:Python 語言實現
-
$890$703 -
$2,210$2,100 -
$3,420$3,249 -
$580$458 -
$539$512 -
$680$537
相關主題
商品描述
Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library
Key Features
- Explore the encoder and decoder of the transformer model
- Become well-versed with BERT along with ALBERT, RoBERTa, and DistilBERT
- Discover how to pre-train and fine-tune BERT models for several NLP tasks
Book Description
BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer's encoder and decoder work.
You'll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you'll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT.
By the end of this BERT book, you'll be well-versed with using BERT and its variants for performing practical NLP tasks.
What you will learn
- Understand the transformer model from the ground up
- Find out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasks
- Get hands-on with BERT by learning to generate contextual word and sentence embeddings
- Fine-tune BERT for downstream tasks
- Get to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT models
- Get the hang of the BERT models based on knowledge distillation
- Understand cross-lingual models such as XLM and XLM-R
- Explore Sentence-BERT, VideoBERT, and BART
Who this book is for
This book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.
商品描述(中文翻譯)
**開始您的自然語言處理 (NLP) 之旅,探索 BERT 及其變體,如 ALBERT、RoBERTa、DistilBERT、VideoBERT 等,使用 Hugging Face 的 transformers 函式庫**
#### 主要特點
- 探索 transformer 模型的編碼器和解碼器
- 熟悉 BERT 以及 ALBERT、RoBERTa 和 DistilBERT
- 發現如何為多個 NLP 任務預訓練和微調 BERT 模型
#### 書籍描述
BERT(來自 transformer 的雙向編碼器表示)以其令人鼓舞的結果徹底改變了自然語言處理 (NLP) 的世界。本書是一本入門指南,將幫助您掌握 Google 的 BERT 架構。通過對 transformer 架構的詳細解釋,本書將幫助您理解 transformer 的編碼器和解碼器是如何工作的。
您將通過學習 BERT 模型的預訓練過程以及如何使用預訓練的 BERT 進行下游任務的微調,來探索 BERT 架構,這些下游任務包括情感分析和文本摘要,使用 Hugging Face 的 transformers 函式庫。隨著學習的深入,您將了解 BERT 的不同變體,如 ALBERT、RoBERTa 和 ELECTRA,並研究用於 NLP 任務(如問題回答)的 SpanBERT。您還將涵蓋基於知識蒸餾的更簡單和更快速的 BERT 變體,如 DistilBERT 和 TinyBERT。本書詳細介紹了 MBERT、XLM 和 XLM-R,然後介紹用於獲取句子表示的 sentence-BERT。最後,您將發現特定領域的 BERT 模型,如 BioBERT 和 ClinicalBERT,並探索一個有趣的變體 VideoBERT。
在本書結束時,您將熟練掌握使用 BERT 及其變體來執行實際的 NLP 任務。
#### 您將學到什麼
- 從基礎了解 transformer 模型
- 瞭解 BERT 的工作原理,並使用遮蔽語言模型 (MLM) 和下一句預測 (NSP) 任務進行預訓練
- 實際操作 BERT,學習生成上下文詞嵌入和句子嵌入
- 為下游任務微調 BERT
- 熟悉 ALBERT、RoBERTa、ELECTRA 和 SpanBERT 模型
- 掌握基於知識蒸餾的 BERT 模型
- 理解跨語言模型,如 XLM 和 XLM-R
- 探索 Sentence-BERT、VideoBERT 和 BART
#### 本書適合誰
本書適合希望簡化 NLP 任務以提高使用 BERT 進行高效語言理解的 NLP 專業人士和數據科學家。需要對 NLP 概念和深度學習有基本的理解,以便充分利用本書。
作者簡介
Sudharsan Ravichandiran is a data scientist and artificial intelligence enthusiast. He holds a Bachelors in Information Technology from Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning including natural language processing and computer vision. He is an open-source contributor and loves answering questions on Stack Overflow.
作者簡介(中文翻譯)
Sudharsan Ravichandiran 是一位資料科學家和人工智慧愛好者。他擁有安娜大學的資訊科技學士學位。他的研究領域專注於深度學習和強化學習的實際應用,包括自然語言處理和計算機視覺。他是一位開源貢獻者,並喜歡在 Stack Overflow 上回答問題。
目錄大綱
Table of Contents
- A Primer on Transformer Model
- Understanding the BERT Model
- Getting Hands-On with BERT
- BERT variants I - ALBERT, RoBERTa, ELECTRA, and SpanBERT
- BERT variants II - Based on knowledge distillation
- Exploring BERTSUM for Text Summarization
- Applying BERT for Other Languages
- Exploring Sentence and Domain Specific BERT
- Working with VideoBERT, BART, and more
目錄大綱(中文翻譯)
Table of Contents
- A Primer on Transformer Model
- Understanding the BERT Model
- Getting Hands-On with BERT
- BERT variants I - ALBERT, RoBERTa, ELECTRA, and SpanBERT
- BERT variants II - Based on knowledge distillation
- Exploring BERTSUM for Text Summarization
- Applying BERT for Other Languages
- Exploring Sentence and Domain Specific BERT
- Working with VideoBERT, BART, and more