Hands-On ROS for Robotics Programming
Ronquillo Japón, Bernardo
- 出版商: Packt Publishing
- 出版日期: 2020-02-26
- 售價: $1,540
- 貴賓價: 9.5 折 $1,463
- 語言: 英文
- 頁數: 432
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1838551301
- ISBN-13: 9781838551308
-
相關分類:
機器人製作 Robots
-
相關翻譯:
ROS 機器人編程實踐 (Hands-On ROS for Robotics Programming) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$780$663 -
$1,000$700 -
$2,170$2,062 -
$658Xilinx FPGA 權威設計指南:基於 Vivado 2018 集成開發環境
-
$520$411 -
$650$507 -
$414$393 -
$2,300$2,185 -
$1,840$1,748 -
$580$458 -
$520$338 -
$780$616 -
$520$411 -
$505Kali Linux 高級滲透測試, 3/e (Mastering Kali Linux for Advanced Penetration Testing: Secure your network with Kali Linux 2019.1 – the ultimate white hat hackers' toolkit, 3/e)
-
$750$638 -
$505$475 -
$1,000$850 -
$454Kali Linux 2 網絡滲透測試實踐指南, 2/e
-
$541$509 -
$252$239 -
$1,511$1,431 -
$580$435 -
$505嚴肅的密碼學:實用現代加密術
-
$2,115Mastering ROS for Robotics Programming : Best practices and troubleshooting solutions when working with ROS, 3/e (Paperback)
-
$700$553
相關主題
商品描述
Connecting a physical robot to a robot simulation using the Robot Operating System (ROS) infrastructure is one of the most common challenges faced by ROS engineers. With this book, you'll learn how to simulate a robot in a virtual environment and achieve desired behavior in equivalent real-world scenarios.
This book starts with an introduction to GoPiGo3 and the sensors and actuators with which it is equipped. You'll then work with GoPiGo3's digital twin by creating a 3D model from scratch and running a simulation in ROS using Gazebo. Next, the book will show you how to use GoPiGo3 to build and run an autonomous mobile robot that is aware of its surroundings. Finally, you'll find out how a robot can learn tasks that have not been programmed in the code but are acquired by observing its environment. You'll even cover topics such as deep learning and reinforcement learning.
By the end of this robot programming book, you'll be well-versed with the basics of building specific-purpose applications in robotics and developing highly intelligent autonomous robots from scratch.
商品描述(中文翻譯)
連接實體機器人到機器人模擬器,使用機器人作業系統(ROS)基礎架構,是ROS工程師面臨的最常見挑戰之一。透過本書,您將學習如何在虛擬環境中模擬機器人並實現等效的真實世界行為。
本書首先介紹GoPiGo3及其配備的感測器和執行器。接著,您將使用Gazebo在ROS中從頭開始創建GoPiGo3的數位孿生體並進行模擬。接下來,本書將向您展示如何使用GoPiGo3構建並運行一個能感知周圍環境的自主移動機器人。最後,您將了解到機器人如何通過觀察環境來學習未在程式碼中編程的任務。甚至還包括深度學習和強化學習等主題。
通過閱讀本書,您將熟悉在機器人領域中構建特定目的應用程式的基礎知識,並能從頭開始開發高度智能的自主機器人。
作者簡介
Bernardo Ronquillo Japón is an Internet of Things (IoT) and robotics expert who has worked for top technology companies since 1995, including Instituto de Astrofísica de Canarias, Gran Telescopio Canarias, Altran, and Alestis Aerospace. Using his skills and experience, he founded The Robot Academy, where he develops open source hardware and software solutions for engineers and makers: Social Robot IO (2015), for the stimulation of children with autistic spectrum disorder; Robot JUS (2016), which helps engineers get deeper technical insights with the Robot Operating System (ROS) when using low-complexity hardware; and IIoT All-in-One (2018) as an industrial IoT training package for assisting companies in their digital transformation process.
作者簡介(中文翻譯)
Bernardo Ronquillo Japón是一位自1995年起在頂尖科技公司工作的物聯網(IoT)和機器人專家,包括加那利天文研究所、加那利大型望遠鏡、Altran和Alestis Aerospace。他利用自己的技能和經驗創立了機器人學院(The Robot Academy),為工程師和製造商開發開源硬體和軟體解決方案,包括Social Robot IO(2015),用於刺激患有自閉症譜系障礙的兒童;Robot JUS(2016),在使用低複雜度硬體時,幫助工程師深入了解機器人作業系統(ROS)的技術;以及IIoT All-in-One(2018),作為一個工業物聯網培訓套件,協助公司進行數字轉型過程。
目錄大綱
- Assembling the Robot
- Unit testing of GoPiGo3
- Getting started with ROS
- Creating the virtual two wheeled ROS robot
- Simulating the robot behavior in a virtual environment with Gazebo
- Programming in ROS: Commands and tools
- Robot control and simulation
- Virtual SLAM and navigation using Gazebo
- SLAM for robot navigation
- Applying Machine Learning in Robotics
- Machine Learning with OpenAI Gym on ROS
- Achieve a goal through Reinforcement Learning
目錄大綱(中文翻譯)
1. 組裝機器人
2. GoPiGo3 的單元測試
3. 開始使用 ROS
4. 建立虛擬的兩輪 ROS 機器人
5. 在 Gazebo 虛擬環境中模擬機器人行為
6. 在 ROS 中進行程式設計:指令和工具
7. 機器人控制和模擬
8. 使用 Gazebo 進行虛擬 SLAM 和導航
9. 機器人導航的 SLAM
10. 在機器人技術中應用機器學習
11. 在 ROS 上使用 OpenAI Gym 進行機器學習
12. 通過強化學習實現目標