Modern Time Series Forecasting with Python: Industry-ready machine learning and deep learning time series analysis with PyTorch and pandas, 2/e (Paperback) (現代時間序列預測:使用Python進行產業級機器學習與深度學習時間序列分析(第二版))
Joseph, Manu, Tackes, Jeffrey
- 出版商: Packt Publishing
- 出版日期: 2024-10-31
- 售價: $2,320
- 貴賓價: 9.5 折 $2,204
- 語言: 英文
- 頁數: 658
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1835883184
- ISBN-13: 9781835883181
-
相關分類:
Python、程式語言、DeepLearning、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$414$393 -
$378產品經理方法論 構建完整的產品知識體系
-
$948$901 -
$352勢道術:產品經理成長之路
-
$1,650$1,568 -
$658B端產品方法論:入門、實戰與進階
-
$600$570 -
$894$849 -
$1,680$1,596 -
$510軟件開發珠璣:穿越 50年軟件往事的 60條戒律
-
$708$673 -
$539$512 -
$2,300$2,185 -
$2,242Continuous Deployment: Enable Faster Feedback, Safer Releases, and More Reliable Software
-
$419$398 -
$414$393 -
$680$537 -
$2,170$2,062 -
$2,356Financial Data Engineering: Design and Build Data-Driven Financial Products (Paperback)
-
$2,641Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)
-
$720$562 -
$305AI產品經理手冊
-
$1,134$1,077
相關主題
商品描述
Learn traditional and cutting-edge machine learning (ML) and deep learning techniques and best practices for time series forecasting, including global forecasting models, conformal prediction, and transformer architectures
Key Features:
- Apply ML and global models to improve forecasting accuracy through practical examples
- Enhance your time series toolkit by using deep learning models, including RNNs, transformers, and N-BEATS
- Learn probabilistic forecasting with conformal prediction, Monte Carlo dropout, and quantile regressions
- Purchase of the print or Kindle book includes a free eBook in PDF format
Book Description:
Predicting the future, whether it's market trends, energy demand, or website traffic, has never been more crucial. This practical, hands-on guide empowers you to build and deploy powerful time series forecasting models. Whether you're working with traditional statistical methods or cutting-edge deep learning architectures, this book provides structured learning and best practices for both.
Starting with the basics, this data science book introduces fundamental time series concepts, such as ARIMA and exponential smoothing, before gradually progressing to advanced topics, such as machine learning for time series, deep neural networks, and transformers. As part of your fundamentals training, you'll learn preprocessing, feature engineering, and model evaluation. As you progress, you'll also explore global forecasting models, ensemble methods, and probabilistic forecasting techniques.
This new edition goes deeper into transformer architectures and probabilistic forecasting, including new content on the latest time series models, conformal prediction, and hierarchical forecasting. Whether you seek advanced deep learning insights or specialized architecture implementations, this edition provides practical strategies and new content to elevate your forecasting skills.
What You Will Learn:
- Build machine learning models for regression-based time series forecasting
- Apply powerful feature engineering techniques to enhance prediction accuracy
- Tackle common challenges like non-stationarity and seasonality
- Combine multiple forecasts using ensembling and stacking for superior results
- Explore cutting-edge advancements in probabilistic forecasting and handle intermittent or sparse time series
- Evaluate and validate your forecasts using best practices and statistical metrics
Who this book is for:
This book is ideal for data scientists, financial analysts, quantitative analysts, machine learning engineers, and researchers who need to model time-dependent data across industries, such as finance, energy, meteorology, risk analysis, and retail. Whether you are a professional looking to apply cutting-edge models to real-world problems or a student aiming to build a strong foundation in time series analysis and forecasting, this book will provide the tools and techniques you need. Familiarity with Python and basic machine learning concepts is recommended.
Table of Contents
- Introducing Time Series
- Acquiring and Processing Time Series Data
- Analyzing and Visualizing Time Series Data
- Setting a Strong Baseline Forecast
- Time Series Forecasting as Regression
- Feature Engineering for Time Series Forecasting
- Target Transformations for Time Series Forecasting
- Forecasting Time Series with Machine Learning Models
- Ensembling and Stacking
- Global Forecasting Models
- Introduction to Deep Learning
- Building Blocks of Deep Learning for Time Series
- Common Modeling Patterns for Time Series
- Attention and Transformers for Time Series
(N.B. Please use the Read Sample option to see further chapters)
商品描述(中文翻譯)
學習傳統與尖端的機器學習(ML)和深度學習技術,以及時間序列預測的最佳實踐,包括全球預測模型、符合預測和變壓器架構。
主要特點:
- 通過實際範例應用機器學習和全球模型來提高預測準確性
- 使用深度學習模型(包括 RNN、變壓器和 N-BEATS)來增強您的時間序列工具包
- 學習使用符合預測、蒙地卡羅隨機失效和分位數回歸進行概率預測
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 格式電子書
書籍描述:
預測未來,無論是市場趨勢、能源需求還是網站流量,從未如此重要。本實用的手冊幫助您建立和部署強大的時間序列預測模型。無論您是使用傳統統計方法還是尖端的深度學習架構,本書都提供結構化的學習和最佳實踐。
本書從基礎開始,介紹基本的時間序列概念,如 ARIMA 和指數平滑,然後逐步進入進階主題,如時間序列的機器學習、深度神經網絡和變壓器。作為基礎訓練的一部分,您將學習預處理、特徵工程和模型評估。隨著進展,您還將探索全球預測模型、集成方法和概率預測技術。
這一新版深入探討變壓器架構和概率預測,包括有關最新時間序列模型、符合預測和層級預測的新內容。無論您尋求進階的深度學習見解還是專業架構實現,本版都提供實用策略和新內容,以提升您的預測技能。
您將學到的內容:
- 建立基於回歸的時間序列預測的機器學習模型
- 應用強大的特徵工程技術以提高預測準確性
- 解決常見挑戰,如非平穩性和季節性
- 使用集成和堆疊結合多個預測以獲得更佳結果
- 探索概率預測的尖端進展,處理間歇性或稀疏的時間序列
- 使用最佳實踐和統計指標評估和驗證您的預測
本書適合對象:
本書非常適合數據科學家、金融分析師、量化分析師、機器學習工程師和研究人員,他們需要在金融、能源、氣象、風險分析和零售等行業建模時間依賴數據。無論您是希望將尖端模型應用於現實問題的專業人士,還是希望在時間序列分析和預測中建立堅實基礎的學生,本書都將提供您所需的工具和技術。建議具備 Python 和基本機器學習概念的熟悉度。
目錄:
- 介紹時間序列
- 獲取和處理時間序列數據
- 分析和可視化時間序列數據
- 設定強基準預測
- 將時間序列預測視為回歸
- 時間序列預測的特徵工程
- 時間序列預測的目標轉換
- 使用機器學習模型進行時間序列預測
- 集成和堆疊
- 全球預測模型
- 深度學習簡介
- 時間序列的深度學習基礎
- 時間序列的常見建模模式
- 時間序列的注意力和變壓器
(注意:請使用「閱讀範本」選項查看後續章節)