Practical Guide to Applied Conformal Prediction in Python: Learn and apply the best uncertainty frameworks to your industry applications
Manokhin, Valery
- 出版商: Packt Publishing
- 出版日期: 2023-12-20
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 240
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1805122762
- ISBN-13: 9781805122760
-
相關分類:
Python、程式語言
海外代購書籍(需單獨結帳)
相關主題
商品描述
Take your machine learning skills to the next level by mastering the best framework for uncertainty quantification - Conformal Prediction
Key Features:
- Master Conformal Prediction, a fast-growing ML framework, with Python applications.
- Explore cutting-edge methods to measure and manage uncertainty in industry applications.
- The book will explain how Conformal Prediction differs from traditional machine learning.
Book Description:
In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. "Practical Guide to Applied Conformal Prediction in Python" addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework set to revolutionize uncertainty management in various ML applications.
Embark on a comprehensive journey through Conformal Prediction, exploring its fundamentals and practical applications in binary classification, regression, time series forecasting, imbalanced data, computer vision, and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. Practical examples in Python using real-world datasets reinforce intuitive explanations, ensuring you acquire a robust understanding of this modern framework for uncertainty quantification.
This guide is a beacon for mastering Conformal Prediction in Python, providing a blend of theory and practical application. It serves as a comprehensive toolkit to enhance machine learning skills, catering to professionals from data scientists to ML engineers.
What You Will Learn:
- The fundamental concepts and principles of conformal prediction
- Learn how conformal prediction differs from traditional ML methods
- Apply real-world examples to your own industry applications
- Explore advanced topics - imbalanced data and multi-class CP
- Dive into the details of the conformal prediction framework
- Boost your career as a data scientist, ML engineer, or researcher
- Learn to apply conformal prediction to forecasting and NLP
Who this book is for:
Ideal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.
商品描述(中文翻譯)
將你的機器學習技能提升到更高的水平,通過掌握最佳的不確定性量化框架 - Conformal Prediction。
主要特點:
- 通過Python應用程序,掌握快速增長的機器學習框架Conformal Prediction。
- 探索在行業應用中測量和管理不確定性的尖端方法。
- 本書將解釋Conformal Prediction與傳統機器學習的區別。
書籍描述:
在機器學習快速發展的領域中,準確量化不確定性的能力至關重要。《Python應用Conformal Prediction實踐指南》通過深入探索Conformal Prediction,一個尖端框架,旨在革新各種機器學習應用中的不確定性管理,滿足了這一需求。
踏上一個全面的Conformal Prediction之旅,探索其在二元分類、回歸、時間序列預測、不平衡數據、計算機視覺和自然語言處理中的基礎和實際應用。每一章節都深入探討特定方面,提供實用的見解和增強預測可靠性的最佳實踐。本書最後聚焦於多類別分類的細微差異,為無縫整合Conformal Prediction到不同行業提供專業水平的能力。使用真實世界數據集的Python實際示例強化直觀解釋,確保您對這種現代不確定性量化框架有牢固的理解。
這本指南是在Python中掌握Conformal Prediction的明燈,提供理論和實際應用的結合。它作為一個全面的工具包,提升機器學習技能,適用於從數據科學家到機器學習工程師的專業人士。
你將學到什麼:
- Conformal Prediction的基本概念和原則
- 學習Conformal Prediction與傳統機器學習方法的區別
- 將實際示例應用於自己的行業應用
- 探索高級主題 - 不平衡數據和多類別CP
- 深入了解Conformal Prediction框架的細節
- 提升作為數據科學家、機器學習工程師或研究人員的職業生涯
- 學習將Conformal Prediction應用於預測和自然語言處理
這本書適合對機器學習概念和Python編程有基本理解的讀者,包括數據科學家、機器學習工程師、學者以及任何希望在機器學習中提升不確定性量化技能的人。