Machine Learning with LightGBM and Python: A practitioner's guide to developing production-ready machine learning systems (Paperback)
暫譯: 使用 LightGBM 和 Python 的機器學習:實務指南以開發生產就緒的機器學習系統 (平裝本)

Wyk, Andrich Van

  • 出版商: Packt Publishing
  • 出版日期: 2023-09-29
  • 售價: $1,900
  • 貴賓價: 9.5$1,805
  • 語言: 英文
  • 頁數: 252
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1800564740
  • ISBN-13: 9781800564749
  • 相關分類: Python程式語言Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Take your software to the next level and solve real-world data science problems by building production-ready machine learning solutions using LightGBM and Python

 

Key Features:

  • Get started with LightGBM, a powerful gradient-boosting library for building ML solutions
  • Apply data science processes to real-world problems through case studies
  • Elevate your software by building machine learning solutions on scalable platforms
  • Purchase of the print or Kindle book includes a free PDF eBook

 

Book Description:

Machine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release.

This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions.

Starting with simple machine learning models in scikit-learn, you'll explore the intricacies of gradient boosting machines and LightGBM. You'll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems.

As you progress, you'll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI.

By the end of this book, you'll be well equipped to use various state-of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.

 

What You Will Learn:

  • Get an overview of ML and working with data and models in Python using scikit-learn
  • Explore decision trees, ensemble learning, gradient boosting, DART, and GOSS
  • Master LightGBM and apply it to classification and regression problems
  • Tune and train your models using AutoML with FLAML and Optuna
  • Build ML pipelines in Python to train and deploy models with secure and performant APIs
  • Scale your solutions to production readiness with AWS Sagemaker, PostgresML, and Dask

 

Who this book is for:

This book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book.

The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask.

商品描述(中文翻譯)

將您的軟體提升到新層次,透過使用 LightGBM 和 Python 建立生產就緒的機器學習解決方案來解決現實世界的數據科學問題

主要特點:


  • 開始使用 LightGBM,這是一個強大的梯度提升庫,用於構建機器學習解決方案

  • 通過案例研究將數據科學過程應用於現實世界的問題

  • 通過在可擴展平台上構建機器學習解決方案來提升您的軟體

  • 購買印刷版或 Kindle 書籍包括免費 PDF 電子書

書籍描述:

《使用 LightGBM 和 Python 的機器學習》是一本全面的指南,旨在學習機器學習的基本知識並進一步構建可擴展的機器學習系統,這些系統已準備好發布。

本書將使您熟悉高性能的梯度提升 LightGBM 框架,並展示如何使用它來解決各種機器學習問題,以產生高準確性、穩健性和預測性的解決方案。

從簡單的 scikit-learn 機器學習模型開始,您將探索梯度提升機器和 LightGBM 的複雜性。您將通過各種案例研究來更好地理解數據科學過程,並學習如何將您的技能實際應用於現實世界的問題。

隨著進展,您將通過學習如何構建和整合可擴展的機器學習管道來處理數據、訓練模型並使用 Python 工具(如 FastAPI)部署它們以提供安全的 API,來提升您的軟體工程技能。

在本書結束時,您將能夠使用各種最先進的工具,幫助您構建生產就緒的系統,包括用於 AutoML 的 FLAML、使用 Postgres 操作機器學習管道的 PostgresML、通過 Dask 進行高性能的分佈式訓練和服務,以及在 AWS Sagemaker 上創建和運行雲端模型。

您將學到的內容:


  • 獲得機器學習的概述,並使用 scikit-learn 在 Python 中處理數據和模型

  • 探索決策樹、集成學習、梯度提升、DART 和 GOSS

  • 掌握 LightGBM 並將其應用於分類和回歸問題

  • 使用 FLAML 和 Optuna 進行 AutoML 調整和訓練您的模型

  • 在 Python 中構建機器學習管道,以安全且高效的 API 訓練和部署模型

  • 使用 AWS Sagemaker、PostgresML 和 Dask 將您的解決方案擴展到生產就緒

本書適合誰:

本書適合希望成為更優秀的機器學習工程師和對 LightGBM 不熟悉的數據科學家,並希望深入了解其庫的軟體工程師。需要具備基本到中級的 Python 編程知識以開始閱讀本書。

本書對於機器學習的老手也是一個極好的資源,強調機器學習工程,並對 AWS Sagemaker、PostgresML 和 Dask 等平台進行了最新和全面的覆蓋。