買這商品的人也買了...
-
$320$288 -
$607機器學習實戰:基於 Scikit-Learn 和 TensorFlow (Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems)
-
$352機器學習:使用 OpenCV 和 Python 進行智能圖像處理 (Machine Learning for OpenCV)
-
$408$388 -
$352電腦視覺算法:基於 OpenCV 的電腦應用開發 (Hands-On Algorithms for Computer Vision)
-
$650$514 -
$427Python 機器學習手冊:從數據預處理到深度學習 (Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning)
-
$403OpenCV 4 電腦視覺項目實戰, 2/e
-
$780$616 -
$331Python 機器學習算法 : 原理、實現與案例
-
$680$537 -
$880$695 -
$210$200 -
$890$703 -
$890$703 -
$600$468 -
$534$507 -
$509$479 -
$880$695 -
$708$673 -
$2,708Machine Learning Production Systems: Engineering Machine Learning Models and Pipelines (Paperback)
-
$1,953Graph Algorithms the Fun Way: Powerful Algorithms Decoded, Not Oversimplified
-
$2,340$2,223 -
$980$774 -
$560$442
相關主題
商品描述
Recent breakthroughs in AI have not only increased demand for AI products, they've also lowered the barriers to entry for those who want to build AI products. The model-as-a-service approach has transformed AI from an esoteric discipline into a powerful development tool that anyone can use. Everyone, including those with minimal or no prior AI experience, can now leverage AI models to build applications. In this book, author Chip Huyen discusses AI engineering: the process of building applications with readily available foundation models.
The book starts with an overview of AI engineering, explaining how it differs from traditional ML engineering and discussing the new AI stack. The more AI is used, the more opportunities there are for catastrophic failures, and therefore, the more important evaluation becomes. This book discusses different approaches to evaluating open-ended models, including the rapidly growing AI-as-a-judge approach.
AI application developers will discover how to navigate the AI landscape, including models, datasets, evaluation benchmarks, and the seemingly infinite number of use cases and application patterns. You'll learn a framework for developing an AI application, starting with simple techniques and progressing toward more sophisticated methods, and discover how to efficiently deploy these applications.
- Understand what AI engineering is and how it differs from traditional machine learning engineering
- Learn the process for developing an AI application, the challenges at each step, and approaches to address them
- Explore various model adaptation techniques, including prompt engineering, RAG, fine-tuning, agents, and dataset engineering, and understand how and why they work
- Examine the bottlenecks for latency and cost when serving foundation models and learn how to overcome them
- Choose the right model, dataset, evaluation benchmarks, and metrics for your needs
Chip Huyen works to accelerate data analytics on GPUs at Voltron Data. Previously, she was with Snorkel AI and NVIDIA, founded an AI infrastructure startup, and taught Machine Learning Systems Design at Stanford. She's the author of the book Designing Machine Learning Systems, an Amazon bestseller in AI.
AI Engineering builds upon and is complementary to Designing Machine Learning Systems (O'Reilly).
商品描述(中文翻譯)
最近在人工智慧(AI)領域的突破不僅增加了對AI產品的需求,還降低了想要開發AI產品的入門門檻。模型即服務(model-as-a-service)的方法將AI從一個深奧的學科轉變為任何人都能使用的強大開發工具。現在,包括那些幾乎沒有或完全沒有AI經驗的人,都可以利用AI模型來構建應用程式。在本書中,作者Chip Huyen討論了AI工程:使用現成的基礎模型來構建應用程式的過程。
本書首先概述了AI工程,解釋了它與傳統機器學習(ML)工程的不同之處,並討論了新的AI技術堆疊。隨著AI的使用越來越普遍,發生災難性故障的機會也隨之增加,因此評估變得越來越重要。本書探討了評估開放式模型的不同方法,包括快速增長的AI作為評審(AI-as-a-judge)方法。
AI應用開發者將學會如何在AI領域中導航,包括模型、數據集、評估基準,以及看似無窮無盡的使用案例和應用模式。您將學習開發AI應用程式的框架,從簡單的技術開始,逐步進入更複雜的方法,並發現如何有效地部署這些應用程式。
- 了解AI工程是什麼,以及它與傳統機器學習工程的不同之處
- 學習開發AI應用程式的過程、每個步驟的挑戰以及應對這些挑戰的方法
- 探索各種模型適應技術,包括提示工程(prompt engineering)、RAG、微調(fine-tuning)、代理(agents)和數據集工程,並理解它們的運作原理及原因
- 檢視在提供基礎模型時的延遲和成本瓶頸,並學習如何克服這些問題
- 根據您的需求選擇合適的模型、數據集、評估基準和指標
Chip Huyen在Voltron Data工作,致力於加速GPU上的數據分析。她曾在Snorkel AI和NVIDIA工作,創立了一家AI基礎設施初創公司,並在斯坦福大學教授機器學習系統設計。她是《設計機器學習系統》(Designing Machine Learning Systems)的作者,該書在AI領域的亞馬遜暢銷書榜上名列前茅。
《AI工程》(AI Engineering)建立在《設計機器學習系統》(Designing Machine Learning Systems, O'Reilly)之上,並與之互補。