Partial Update Least-Square Adaptive Filtering (Synthesis Lectures on Communications)

Bei Xie, Tamal Bose

  • 出版商: Morgan & Claypool
  • 出版日期: 2014-05-01
  • 售價: $1,580
  • 貴賓價: 9.5$1,501
  • 語言: 英文
  • 頁數: 118
  • 裝訂: Paperback
  • ISBN: 1627052313
  • ISBN-13: 9781627052313
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful.

This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification.

Table of Contents: Introduction / Background / Partial Update CMA-based Algorithms for Adaptive Filtering / Partial-Update CG Algorithms for Adaptive Filtering / Partial-Update EDS Algorithms for Adaptive Filtering / Special Applications of Partial-Update Adaptive Filters / Bibliography / Authors' Biographies

商品描述(中文翻譯)

自適應濾波器在數位信號處理和通信相關領域中扮演著重要角色,例如系統識別、噪聲消除、通道均衡和波束形成。在實際應用中,自適應濾波器的計算複雜度是一個重要考量。最小均方(Least Mean Square, LMS)演算法因其低計算複雜度($O(N)$)和實現簡單而被廣泛使用。最小二乘演算法,如遞迴最小二乘(Recursive Least Squares, RLS)、共軛梯度(Conjugate Gradient, CG)和歐幾里得方向搜尋(Euclidean Direction Search, EDS),可以比LMS更快收斂,並且具有較低的穩態均方誤差(MSE)。然而,它們的高計算複雜度($O(N^2)$)使其不適合許多即時應用。控制計算複雜度的一個著名方法是將部分更新(Partial Update, PU)方法應用於自適應濾波器。部分更新方法可以通過更新部分權重向量而不是整個向量,或通過在部分時間內進行更新來降低自適應演算法的複雜度。在文獻中,對這些部分更新自適應濾波器演算法的分析相對較少。大多數分析基於部分更新LMS及其變體。只有少數論文探討了部分更新RLS和仿射投影(Affine Projection, AP)。因此,對PU最小二乘自適應濾波器演算法的分析是必要且有意義的。

本專著主要集中於部分更新最小二乘自適應濾波器演算法的分析。基本的部分更新方法應用於自適應濾波器演算法,包括最小二乘CMA(Least Squares CMA, LSCMA)、EDS和CG。PU方法也應用於CMA1-2和NCMA,以便與LSCMA的性能進行比較。提供了數學推導和性能分析,包括對於時間不變系統的收斂條件、穩態均值和均方性能。對於時間變化系統的穩態均值和均方性能也進行了呈現。計算複雜度對每個自適應濾波器演算法進行了計算。數值範例顯示了PU自適應濾波器與全更新濾波器的計算複雜度比較。計算機模擬範例,包括系統識別和通道均衡,用於展示數學分析並顯示PU自適應濾波器演算法的性能。它們還顯示了PU自適應濾波器的收斂性能。原始自適應濾波器演算法與不同的部分更新方法之間的性能進行了比較。相似的PU最小二乘自適應濾波器演算法,如PU RLS、PU CG和PU EDS之間的性能也進行了比較。除了系統識別和通道均衡的通用應用外,還介紹了兩個使用部分更新自適應濾波器的特殊應用。一個應用使用PU自適應濾波器在使用開放基站(Open Base Transceiver Station, OpenBTS)和Asterisk私人分支交換機(PBX)的本地GSM系統中檢測全球移動通信系統(Global System for Mobile Communication, GSM)信號。另一個應用使用PU自適應濾波器在結合高光譜影像壓縮和分類的系統中進行影像壓縮。

目錄:引言 / 背景 / 基於CMA的部分更新自適應濾波演算法 / 基於CG的部分更新自適應濾波演算法 / 基於EDS的部分更新自適應濾波演算法 / 部分更新自適應濾波器的特殊應用 / 參考文獻 / 作者簡介