Correlative Learning: A Basis for Brain and Adaptive Systems
Zhe Chen, Simon Haykin, Jos J. Eggermont, Suzanna Becker
- 出版商: Wiley
- 出版日期: 2007-09-01
- 售價: $6,640
- 貴賓價: 9.5 折 $6,308
- 語言: 英文
- 頁數: 480
- 裝訂: Hardcover
- ISBN: 0470044888
- ISBN-13: 9780470044889
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,100$1,045 -
$680$537 -
$539Principles of Geotechnical Engineering
-
$550$495 -
$880$581 -
$650$514 -
$1,680High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
-
$780$702 -
$680$578 -
$690$587 -
$1,390New Directions in Statistical Signal Processing: From Systems to Brains
-
$680$537 -
$1,200$948 -
$880$616 -
$600$480 -
$720$612 -
$520$442 -
$300$270 -
$980$774 -
$490$417 -
$420$357 -
$1,264Semantics with Applications: An Appetizer (Paperback)
-
$1,300$1,274 -
$2,140$2,033 -
$850$663
相關主題
商品描述
Description
Correlative Learning: A Basis for Brain and Adaptive Systems provides a bridge between three disciplines: computational neuroscience, neural networks, and signal processing. First, the authors lay down the preliminary neuroscience background for engineers. The book also presents an overview of the role of correlation in the human brain as well as in the adaptive signal processing world; unifies many well-established synaptic adaptations (learning) rules within the correlation-based learning framework, focusing on a particular correlative learning paradigm, ALOPEX; and presents case studies that illustrate how to use different computational tools and ALOPEX to help readers understand certain brain functions or fit specific engineering applications.~
Table of Contents
Foreword.Preface.
Acknowledgments.
Acronyms.
Introduction.
1. The Correlative Brain.
1.1 Background.
1.1.1 Spiking Neurons.
1.1.2 Neocortex.
1.1.3 Receptive fields.
1.1.4 Thalamus.
1.1.5 Hippocampus.
1.2 Correlation Detection in Single Neurons.
1.3 Correlation in Ensembles of Neurons: Synchrony and Population Coding.
1.4 Correlation is the Basis of Novelty Detection and Learning.
1.5 Correlation in Sensory Systems: Coding, Perception, and Development.
1.6 Correlation in Memory Systems.
1.7 Correlation in Sensory-Motor Learning.
1.8 Correlation, Feature Binding, and Attention.
1.9 Correlation and Cortical Map Changes after Peripheral Lesions and Brain Stimulation.
1.10 Discussion.
2. Correlation in Signal Processing.
2.1 Correlation and Spectrum Analysis.
2.1.1 Stationary Process.
2.1.2 Non-stationary Process.
2.1.3 Locally Stationary Process.
2.1.4 Cyclostationary Process.
2.1.5 Hilbert Spectrum Analysis.
2.1.6 Higher Order Correlation-based Bispectra Analysis.
2.1.7 Higher Order Functions of Time, Frequency, Lag, and Doppler.
2.1.8 Spectrum Analysis of Random Point Process.
2.2 Wiener Filter.
2.3 Least-Mean-Square Filter.
2.4 Recursive Least-Squares Filter.
2.5 Matched Filter.
2.6 Higher Order Correlation-Based Filtering.
2.7 Correlation Detector.
2.7.1 Coherent Detection.
2.7.2 Correlation Filter for Spatial Target Detection.
2.8 Correlation Method for Time-Delay Estimation.
2.9 Correlation-Based Statistical Analysis.
2.9.1 Principal Component Analysis.
2.9.2 Factor Analysis.
2.9.3 Canonical Correlation Analysis.
2.9.4 Fisher Linear Discriminant Analysis.
2.9.5 Common Spatial Pattern Analysis.
2.10 Discussion.
Appendix: Eigenanalysis of Autocorrelation Function of Nonstationary Process.
Appendix: Estimation of the Intensity and Correlation Functions of Stationary Random Point Process.
Appendix: Derivation of Learning Rules with Quasi-Newton Method.
3. Correlation-Based Neural Learning and Machine Learning.
3.1 Correlation as a Mathematical Basis for Learning.
3.1.1 Hebbian and Anti-Hebbian Rules (Revisited).
3.1.2 Covariance Rule.
3.1.3 Grossberg’s Gated Steepest Descent.
3.1.4 Competitive Learning Rule.
3.1.5 BCM Learning Rule.
3.1.6 Local PCA Learning Rule.
3.1.7 Generalizations of PCA Learning.
3.1.8 CCA Learning Rule.
3.1.9 Wake-Sleep Learning Rule for Factor Analysis.
3.1.10 Boltzmann Learning Rule.
3.1.11 Perceptron Rule and Error-Correcting Learning Rule.
3.1.12 Differential Hebbian Rule and Temporal Hebbian Learning.
3.1.13 Temporal Difference and Reinforcement Learning.
3.1.14 General Correlative Learning and Potential Function.
3.2 Information-Theoretic Learning.
3.2.1 Mutual Information vs. Correlation.
3.2.2 Barlow’s Postulate.
3.2.3 Hebbian Learning and Maximum Entropy.
3.2.4 Imax Algorithm.
3.2.5 Local Decorrelative Learning.
3.2.6 Blind Source Separation.
3.2.7 Independent Component Analysis.
3.2.8 Slow Feature Analysis.
3.2.9 Energy-Efficient Hebbian Learning.
3.2.10 Discussion.
3.3 Correlation-Based Computational Neural Models.
3.3.1 Correlation Matrix Memory.
3.3.2 Hopfield Network.
3.3.3 Brain-State-in-a-Box Model.
3.3.4 Autoencoder Network.
3.3.5 Novelty Filter.
3.3.6 Neuronal Synchrony and Binding.
3.3.7 Oscillatory Correlation.
3.3.8 Modeling Auditory Functions.
3.3.9 Correlations in the Olfactory System.
3.3.10 Correlations in the Visual System.
3.3.11 Elastic Net.
3.3.12 CMAC and Motor Learning.
3.3.13 Summarizing Remarks.
Appendix: Mathematical Analysis of Hebbian Learning.
Appendix: Necessity and Convergence of Anti-Hebbian Learning.
Appendix: Link Between the Hebbian Rule and Gradient Descent.
Appendix: Reconstruction Error in Linear and Quadratic PCA.
4. Correlation-Based Kernel Learning.
4.1 Background.
4.2 Kernel PCA and Kernelized GHA.
4.3 Kernel CCA and Kernel ICA.
4.4 Kernel Principal Angles.
4.5 Kernel Discriminant Analysis.
4.6 KernelWiener Filter.
4.7 Kernel-Based Correlation Analysis: Generalized Correlation Function and Correntropy.
4.8 Kernel Matched Filter.
4.9 Discussion.
5. Correlative Learning in a Complex-Valued Domain.
5.1 Preliminaries.
5.2 Complex-Valued Extensions of Correlation-Based Learning.
5.2.1 Complex-Valued Associative Memory.
5.2.2 Complex-Valued Boltzmann Machine.
5.2.3 Complex-Valued LMS Rule.
5.2.4 Complex-Valued PCA Learning.
5.2.5 Complex-Valued ICA Learning.
5.2.6 Constant Modulus Algorithm.
5.3 Kernel Methods for Complex-Valued Data.
5.3.1 Reproducing Kernels in the Complex Domain.
5.3.2 Complex-Valued Kernel PCA.
5.4 Discussion.
6. ALOPEX: A Correlation-Based Learning Paradigm.
6.1 Background.
6.2 The Basic ALOPEX Rule.
6.3 Variants of the ALOPEX Algorithm.
6.3.1 Unnikrishnan and Venugopal’s ALOPEX.
6.3.2 Bia’s ALOPEX-B.
6.3.3 An Improved Version of the ALOPEX-B.
6.3.4 Two-Timescale ALOPEX.
6.3.5 Other Types of Correlation Mechanisms.
6.4 Discussion.
6.5 Monte Carlo Sampling-Based ALOPEX Algorithms.
6.5.1 Sequential Monte Carlo Estimation.
6.5.2 Sampling-Based ALOPEX Algorithms.
6.5.3 Remarks.
Appendix: Asymptotical Analysis of the ALOPEX Process.
Appendix: Asymptotic Convergence Analysis of the 2t-ALOPEX Algorithm.
7. Case Studies.
7.1 Hebbian Competition as the Basis for Cortical Map Reorganization?
7.2 Learning Neurocompensator: A Model-Based Hearing Compensation Strategy.
7.2.1 Background.
7.2.2 Model-Based Hearing Compensation Strategy.
7.2.3 Optimization.
7.2.4 Experimental Results.
7.2.5 Summary.
7.3 Online Training of Artificial Neural Networks.
7.3.1 Background.
7.3.2 Parameters Setup.
7.3.3 Online Option Prices Prediction.
7.3.4 Online System Identification.
7.3.5 Summary.
7.4 Kalman Filtering in Computational Neural Modeling.
7.4.1 Background.
7.4.2 Overview of Kalman Filter in Modeling Brain Functions.
7.4.3 Kalman Filter for Learning Shape and Motion from Image Sequences.
7.4.4 General Remarks and Implications.
8. Discussion.
8.1 Summary: Why Correlation?
8.1.1 Hebbian Plasticity and the Correlative Brain.
8.1.2 Correlation-Based Signal Processing.
8.1.3 Correlation-Based Machine Learning.
8.2 Epilogue: What Next?
8.2.1 Generalizing the Correlation Measure.
8.2.2 Deciphering the Correlative Brain.
Appendix A: Autocorrelation and Cross-correlation Functions.
Appendix B: Stochastic Approximation.
Appendix C: A Primer on Linear Algebra.
Appendix D: Probability Density and Entropy Estimators.
Appendix E: EM Algorithm.
Topic Index.
商品描述(中文翻譯)
描述
《相關學習:大腦與自適應系統的基礎》提供了計算神經科學、神經網絡和信號處理三個學科之間的橋樑。首先,作者為工程師奠定了初步的神經科學背景。該書還概述了相關性在人體大腦以及自適應信號處理世界中的角色;統一了許多成熟的突觸適應(學習)規則,並將其置於基於相關性的學習框架中,專注於一個特定的相關學習範式 ALOPEX;並呈現案例研究,說明如何使用不同的計算工具和 ALOPEX 來幫助讀者理解某些大腦功能或適應特定的工程應用。
目錄
前言
序言
致謝
縮寫
引言
1. 相關的大腦
1.1 背景
1.1.1 脈衝神經元
1.1.2 新皮層
1.1.3 感受野
1.1.4 視丘
1.1.5 海馬體
1.2 單一神經元中的相關性檢測
1.3 神經元集群中的相關性:同步性與群體編碼
1.4 相關性是新奇檢測與學習的基礎
1.5 感官系統中的相關性:編碼、感知與發展
1.6 記憶系統中的相關性
1.7 感官-運動學習中的相關性
1.8 相關性、特徵綁定與注意力
1.9 外周損傷與大腦刺激後的相關性與皮層地圖變化
1.10 討論
2. 信號處理中的相關性
2.1 相關性與頻譜分析
2.1.1 穩態過程
2.1.2 非穩態過程
2.1.3 局部穩態過程
2.1.4 週期穩態過程
2.1.5 希爾伯特頻譜分析
2.1.6 基於高階相關性的雙頻譜分析
2.1.7 時間、頻率、延遲與多普勒的高階函數
2.1.8 隨機點過程的頻譜分析
2.2 威納濾波器
2.3 最小均方濾波器
2.4 迴歸最小平方濾波器
2.5 匹配濾波器
2.6 基於高階相關性的濾波
2.7 相關檢測器
2.7.1 相干檢測
2.7.2 用於空間目標檢測的相關濾波器
2.8 用於時間延遲估計的相關方法
2.9 基於相關性的統計分析
2.9.1 主成分分析
2.9.2 因子分析
2.9.3 標準相關分析
2.9.4 費雪線性判別分析
2.9.5 共同空間模式分析
2.10 討論
附錄:非穩態過程自相關函數的特徵分析
附錄:穩態隨機點過程的強度與相關函數估計
附錄:使用準牛頓法推導學習規則
3. 基於相關性的神經學習與機器學習
3.1 相關性