Practical Natural Language Processing: A Comprehensive Guide to Building Real-World Nlp Systems (Paperback)
Vajjala, Sowmya, Majumder, Bodhisattwa, Gupta, Anuj
- 出版商: O'Reilly
- 出版日期: 2020-07-21
- 定價: $2,730
- 售價: 9.0 折 $2,457
- 語言: 英文
- 頁數: 325
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492054054
- ISBN-13: 9781492054054
-
相關分類:
Text-mining
-
相關翻譯:
自然語言處理最佳實務|全面建構真正的 NLP 系統 (Practical Natural Language Processing: A Comprehensive Guide to Building Real-World Nlp Systems) (繁中版)
自然語言處理實戰:從入門到項目實踐 (簡中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$1,710$1,625 -
$650$514 -
$490$387 -
$2,910$2,765 -
$1,680An Introduction to Statistical Learning: With Applications in R (Hardcover)
-
$500$390 -
$690$587 -
$2,600$2,470 -
$2,970Natural Language Processing with PyTorch
-
$1,800$1,710 -
$500$395 -
$380$300 -
$1,200$1,020 -
$650$553 -
$1,840High Performance Python: Practical Performant Programming for Humans, 2/e (Paperback)
-
$4,720$4,626 -
$780$663 -
$1,000$660 -
$2,070$1,967 -
$1,460$1,387 -
$551阿裡雲天池大賽賽題解析 — 深度學習篇
-
$2,150$2,043 -
$2,170$2,062 -
$680$537 -
$680$537
相關主題
商品描述
If you want to build, iterate and scale NLP systems in a business setting and to tailor them for various industry verticals, this is your guide.
Consider the task of building a chatbot or text classification system at your organization. In the beginning, there may be little or no data to work with. At this point, a basic solution that uses rule based systems or traditional machine learning will be apt. As you accumulate more data, more sophisticated--and often data intensive--ML techniques can be used including deep learning. At each step of this journey, there are dozens of alternative approaches you can take. This book helps you navigate this maze of options.
商品描述(中文翻譯)
如果您想在商業環境中建立、迭代和擴展自然語言處理系統,並為不同行業垂直領域量身定制這些系統,那麼這本書就是您的指南。
考慮在您的組織中建立聊天機器人或文本分類系統的任務。一開始可能沒有太多數據可供使用。此時,使用基於規則的系統或傳統機器學習的基本解決方案是合適的。隨著您累積更多數據,可以使用更複雜且通常需要大量數據的機器學習技術,包括深度學習。在這個旅程的每一步中,您都可以選擇數十種替代方法。這本書將幫助您在這些選擇中找到方向。
作者簡介
Sowmya Vajjala has a PhD in Computational Linguistics from University of Tubingen, Germany. She currently works as a research officer at National Research Council, Canada's largest federal research and development organization. Her past work experience spans both academia as a faculty at Iowa State University, USA as well as industry at Microsoft Research and The Globe and Mail.
Bodhisattwa Majumder is a doctoral candidate in NLP and ML at UC San Diego. Earlier he studied at IIT Kharagpur where he graduated summa cum laude. Previously, he built large-scale NLP systems at Google AI Research and Microsoft Research, which went into products serving millions of users. Currently, he is also leading his university team in the Amazon Alexa Prize for 2019-2020.
Anuj Gupta has built NLP and ML systems at Fortune 100 companies as well as startups as a senior leader. He has incubated and led multiple ML teams in his career. He studied computer science at IIT Delhi and IIIT Hyderabad. He is currently Head of Machine Learning and Data Science at Vahan Inc. Above all, he is a father and husband.
Harshit Surana is founder at DeepFlux Inc. He has built and scaled ML systems at several Silicon Valley startups as a founder and an advisor. He studied computer science at Carnegie Mellon University where he worked with the MIT Media Lab on common sense AI. His research in NLP has received over 200 citations.
作者簡介(中文翻譯)
Sowmya Vajjala擁有德國圖賓根大學(University of Tubingen)的計算語言學博士學位。她目前在加拿大國家研究委員會(National Research Council)擔任研究員,該機構是加拿大最大的聯邦研究和開發組織。她過去的工作經驗涵蓋了學術界,在美國愛荷華州立大學(Iowa State University)擔任教職,以及在微軟研究院(Microsoft Research)和The Globe and Mail擔任工業界職位。
Bodhisattwa Majumder是加州大學聖地亞哥分校(UC San Diego)自然語言處理(NLP)和機器學習(ML)的博士候選人。他之前在印度理工學院卡拉格普爾分校(IIT Kharagpur)學習,並以優異成績畢業。此前,他在谷歌人工智能研究部門(Google AI Research)和微軟研究院(Microsoft Research)建立了大規模的自然語言處理系統,這些系統服務於數百萬用戶。目前,他還帶領他所在的大學團隊參加2019-2020年的亞馬遜Alexa Prize。
Anuj Gupta作為高級領導者,在財富100強公司和初創公司建立了自然語言處理(NLP)和機器學習(ML)系統。他在職業生涯中孵化並領導了多個機器學習團隊。他在印度理工學院德里分校(IIT Delhi)和國際資訊科技研究所海得拉巴分校(IIIT Hyderabad)學習計算機科學。他目前是Vahan Inc.的機器學習和數據科學負責人。最重要的是,他是一位父親和丈夫。
Harshit Surana是DeepFlux Inc.的創始人。作為創始人和顧問,他在幾家矽谷初創公司建立和擴展了機器學習(ML)系統。他在卡內基梅隆大學(Carnegie Mellon University)學習計算機科學,並與麻省理工學院媒體實驗室合作研究常識人工智能。他在自然語言處理(NLP)方面的研究已經獲得了200多次引用。