Fundamental Mechanics of Fluids, 4/e (Hardcover)
I.G. Currie
- 出版商: CRC
- 出版日期: 2012-08-01
- 售價: $6,060
- 貴賓價: 9.5 折 $5,757
- 語言: 英文
- 頁數: 603
- 裝訂: Hardcover
- ISBN: 1439874603
- ISBN-13: 9781439874608
海外代購書籍(需單獨結帳)
相關主題
商品描述
<內容簡介>
Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanics—before concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile instructional resource comprises five flexible, self-contained sections:
* Governing Equations deals with the derivation of the basic conservation laws, flow kinematics, and some basic theorems of fluid mechanics.
* Ideal-Fluid Flow covers two- and three-dimensional potential flows and surface waves.
* Viscous Flows of Incompressible Fluids discusses exact solutions, low-Reynolds-number approximations, boundary-layer theory, and buoyancy-driven flows.
* Compressible Flow of Inviscid Fluids addresses shockwaves as well as one- and multidimensional flows.
* Methods of Mathematical Analysis summarizes some commonly used analysis techniques. Additional appendices offer a synopsis of vectors, tensors, Fourier series, thermodynamics, and the governing equations in the common coordinate systems.
The book identifies the phenomena associated with the various properties of compressible, viscous fluids in unsteady, three-dimensional flow situations. It provides techniques for solving specific types of fluid-flow problems, and it covers the derivation of the basic equations governing the laminar flow of Newtonian fluids, first assessing general situations and then shifting focus to more specific scenarios.
The author illustrates the process of finding solutions to the governing equations. In the process, he reveals both the mathematical methodology and physical phenomena involved in each category of flow situation, which include ideal, viscous, and compressible fluids. This categorization enables a clear explanation of the different solution methods and the basis for the various physical consequences of fluid properties and flow characteristics. Armed with this new understanding, readers can then apply the appropriate equation results to deal with the particular circumstances of their own work.
Table Of Contents
Part I: Governing Equations
Basic Conservation Laws
Statistical and Continuum Methods
Eulerian and Lagrangian Coordinates
Material Derivative
Control Volumes
Reynolds’ Transport Theorem
Conservation of Mass
Conservation of Momentum
Conservation of Energy
Discussion of Conservation Equations
Rotation and Rate of Shear
Constitutive Equations
Viscosity Coefficients
Navier–Stokes Equations
Energy Equation
Governing Equations for Newtonian Fluids
Boundary Conditions
Flow Kinematics
Flow Lines
Circulation and Vorticity
Stream Tubes and Vortex Tubes
Kinematics of Vortex Lines
Special Forms of the Governing Equations
Kelvin’s Theorem
Bernoulli Equation
Crocco’s Equation
Vorticity Equation
Part II: Ideal-Fluid Flow
Two-Dimensional Potential Flows
Stream Function
Complex Potential and Complex Velocity
Uniform Flows
Source, Sink, and Vortex Flows
Flow in Sector
Flow around Sharp Edge
Flow due to Doublet
Circular Cylinder without Circulation
Circular Cylinder with Circulation
Blasius Integral Laws
Force and Moment on Circular Cylinder
Conformal Transformations
Joukowski Transformation
Flow around Ellipses
Kutta Condition and Flat-Plate Airfoil
Symmetrical Joukowski Airfoil
Circular-Arc Airfoil
Joukowski Airfoil
Schwarz–Christoffel Transformation
Source in Channel
Flow through Aperture
Flow Past Vertical Flat Plate
Three-Dimensional Potential Flows
Velocity Potential
Stokes’ Stream Function
Solution of Potential Equation
Uniform Flow
Source and Sink
Flow due to Doublet
Flow near Blunt Nose
Flow around Sphere
Line-Distributed Source
Sphere in Flow Field of Source
Rankine Solids
D’Alembert’s Paradox
Forces Induced by Singularities
Kinetic Energy of Moving Fluid
Apparent Mass
Surface Waves
General Surface-Wave Problem
Small-Amplitude Plane Waves
Propagation of Surface Waves
Effect of Surface Tension
Shallow-Liquid Waves of Arbitrary Form
Complex Potential for Traveling Waves
Particle Paths for Traveling Waves
Standing Waves
Particle Paths for Standing Waves
Waves in Rectangular Vessels
Waves in Cylindrical Vessels
Propagation of Waves at Interface
Part III: Viscous Flows of Incompressible Fluids
Exact Solutions
Couette Flow
Poiseuille Flow
Flow between Rotating Cylinders
Stokes’ First Problem
Stokes’ Second Problem
Pulsating Flow between Parallel Surfaces
Stagnation-Point Flow
Flow in Convergent and Divergent Channels
Flow over Porous Wall
Low Reynolds Number Solutions
Stokes Approximation
Uniform Flow
Doublet
Rotlet
Stokeslet
Rotating Sphere in Fluid
Uniform Flow Past Sphere
Uniform Flow Past Circular Cylinder
Oseen Approximation
Boundary Layers
Boundary-Layer Thicknesses
Boundary-Layer Equations
Blasius Solution
Falkner–Skan Solutions
Flow over a Wedge
Stagnation-Point Flow
Flow in Convergent Channel
Approximate Solution for Flat Surface
General Momentum Integral
Ka'rma'n–Pohlhausen Approximation
Boundary-Layer Separation
Stability of Boundary Layers
Buoyancy-Driven Flows
Boussinesq Approximation
Thermal Convection
Boundary-Layer Approximations
Vertical Isothermal Surface
Line Source of Heat
Point Source of Heat
Stability of Horizontal Layers
Part IV: Compressible Flow of Inviscid Fluids
Shock Waves
Propagation of Infinitesimal Disturbances
Propagation of Finite Disturbances
Rankine-Hugoniot Equations
Conditions for Normal Shock Waves
Normal-Shock-Wave Equations
Oblique Shock Waves
One-Dimensional Flows
Weak Waves
Weak Shock Tubes
Wall Reflection of Waves
Reflection and Refraction at Interface
Piston Problem
Finite-Strength Shock Tubes
Nonadiabatic Flows
Isentropic-Flow Relations
Flow through Nozzles
Multidimensional Flows
Irrotational Motion
Janzen–Rayleigh Expansion
Small-Perturbation Theory
Pressure Coefficient
Flow over Wave-Shaped Wall
Prandtl–Glauert Rule for Subsonic Flow
Ackeret’s Theory for Supersonic Flows
Prandtl–Meyer Flow
Part V: Methods of Mathematical Analysis
Some Useful Methods of Analysis
Fourier Series
Complex Variables
Separation of Variable Solutions
Similarity Solutions
Group Invariance Methods
Appendix A: Vector Analysis
Vector Identities
Integral Theorems
Orthogonal Curvilinear Coordinates
Appendix B: Tensors
Notation and Definition
Tensor Algebra
Tensor Operations
Isotropic Tensors
Integral Theorems
Appendix C: Governing Equations
Cartesian Coordinates
Cylindrical Coordinates
Spherical Coordinates
Appendix D: Fourier Series
Appendix E: Thermodynamics
Zeroth Law
First Law
Equations of State
Enthalpy
Specific Heats
Adiabatic, Reversible Processes
Entropy
Second Law
Canonical Equations of State
Reciprocity Relations
商品描述(中文翻譯)
《流體力學基礎》第四版針對流體力學基礎知識的需求,提供了一本入門教材,先著重介紹基本的流體力學概念,再深入探討理想流體流動和邊界層理論等專業領域。這本教材填補了工程學不同分支的學生和專業人士的需求,包含五個靈活、獨立的部分:
* 控制方程式部分介紹了基本守恆定律的推導、流動運動學和一些基本的流體力學定理。
* 理想流體流動部分涵蓋了二維和三維的位勢流和表面波動。
* 不可壓縮流體黏性流動部分討論了精確解、低雷諾數近似、邊界層理論和浮力驅動流動。
* 不可壓縮流體可壓縮流動部分涵蓋了衝擊波以及一維和多維流動。
* 數學分析方法部分總結了一些常用的分析技巧。附錄還提供了向量、張量、傅立葉級數、熱力學和常見坐標系統中的控制方程式的概要。
本書確定了與不可壓縮、黏性流體在非穩定、三維流動情況下相關的現象。它提供了解決特定類型流體流動問題的技巧,並涵蓋了基本的牛頓流體層流方程的推導,首先評估一般情況,然後專注於更具體的情景。
作者以實例說明了尋找控制方程式解的過程。在此過程中,他揭示了每個流動情況中涉及的數學方法和物理現象,包括理想流體、黏性流體和可壓縮流體。這種分類使得能夠清晰解釋不同解決方法和流體性質以及流動特性的各種物理結果的基礎。讀者在獲得這種新的理解後,可以將適當的方程結果應用於處理自己工作的特定情況。
目錄:
第一部分:控制方程式
基本守恆定律
統計和連續方法
歐拉和拉格朗日座標
物質導數
控制體
雷諾運輸定理
質量守恆
動量守恆
能量守恆
守恆方程式討論
旋轉和剪切速率
本構方程式
黏滯係數
納維爾-斯托克斯方程式
能量方程式
牛頓流體的控制方程式
邊界條件
流動運動學
流線
環流和渦度
流管和渦管
渦線運動學
控制方程式的特殊形式
開爾文定理
Be