Probabilistic Forecasting and Bayesian Data Assimilation (Cambridge Texts in Applied Mathematics)
Sebastian Reich
- 出版商: Cambridge
- 出版日期: 2015-05-14
- 售價: $2,830
- 貴賓價: 9.5 折 $2,689
- 語言: 英文
- 頁數: 308
- 裝訂: Paperback
- ISBN: 1107663911
- ISBN-13: 9781107663916
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.
商品描述(中文翻譯)
在本書中,作者描述了概率預測和貝葉斯數據同化背後的原則和方法。作者並未專注於特定的應用領域,而是採用一般的動態系統方法,並提供了大量低維度、離散時間的數值範例,以幫助讀者建立對該主題的直覺。第一部分解釋了基於集合的概率預測和不確定性量化的數學框架。第二部分專注於貝葉斯過濾算法,涵蓋了從經典數據同化算法(如卡爾曼濾波器、變分技術和序列蒙地卡羅方法)到更近期的發展(如集合卡爾曼濾波器和集合變換濾波器)。McKean 方法結合測度耦合的序列過濾方法,為第二部分提供了一個統一的數學框架。本書假設讀者對概率有基本的了解,非常適合作為應用數學、計算機科學、工程、地球科學及其他新興應用領域的研究生入門書籍。