The Finite Element Method: Its Basis and Fundamentals, 6/e (Hardcover)
暫譯: 有限元素法:基礎與原理,第6版(精裝本)

Olek C Zienkiewicz, Robert L Taylor, J.Z. Zhu

  • 出版商: Butterworth-Heineman
  • 出版日期: 2005-05-02
  • 售價: $1,176
  • 語言: 英文
  • 頁數: 752
  • 裝訂: Hardcover
  • ISBN: 0750663200
  • ISBN-13: 9780750663205
  • 已絕版

買這商品的人也買了...

相關主題

商品描述

Description

The Sixth Edition of this influential best-selling book delivers the most up-to-date and comprehensive text and reference yet on the basis of the finite element method (FEM) for all engineers and mathematicians. Since the appearance of the first edition 38 years ago, The Finite Element Method provides arguably the most authoritative introductory text to the method, covering the latest developments and approaches in this dynamic subject, and is amply supplemented by exercises, worked solutions and computer algorithms.

• The classic FEM text, written by the subject's leading authors
• Enhancements include more worked examples and exercises, plus a companion website with a solutions manual and downloadable algorithms
• With a new chapter on automatic mesh generation and added materials on shape function development and the use of higher order elements in solving elasticity and field problems

Active research has shaped The Finite Element Method into the pre-eminent tool for the modelling of physical systems. It maintains the comprehensive style of earlier editions, while presenting the systematic development for the solution of problems modelled by linear differential equations.

Together with the second and third self-contained volumes (0750663219 and 0750663227), The Finite Element Method Set (0750664312) provides a formidable resource covering the theory and the application of FEM, including the basis of the method, its application to advanced solid and structural mechanics and to computational fluid dynamics.

 

Table of Contents

Chapter 1: The standard discrete system and origins of the finite element method
1.1 Introduction
1.2 The structural element and the structural system
1.3 Assembly and analysis of a structure
1.4 The boundary conditions
1.5 Electrical and fluid networks
1.6 The general pattern
1.7 The standard discrete system
1.8 Transformation of coordinates
1.9 Problems

Chapter 2: A direct physical approach to problems in elasticity: plane stress
2.1 Introduction
2.2 Direct formulation of finite element characteristics
2.3 Generalization to the whole region ¨C internal nodal force concept abandoned
2.4 Displacement approach as a Minimization of total potential energy
2.5 Convergence criteria
2.6 Discretization error and convergence rate
2.7 Displacement functions with discontinuity between elements ¨C non-conforming elements and the patch test
2.8 Finite element solution process
2.9 Numerical examples
2.10 Concluding remarks
2.11 Problems

Chapter 3: Generalization of finite element concepts
3.1 Introduction
3.2 Integral or ¡®weak¡¯ statements equivalent to the differential equations
3.3 Approximation to integral formulations: the weighted residual-Galerkin method
3.4 Virtual work as the ¡®weak form¡¯ of equilibrium equations for analysis of solids or fluids
3.5 Partial discretization
3.6 Convergence
3.7 What are ¡®variational principles¡¯?
3.8 ¡®Natural¡¯ variational principles and their relation to governing differential equations
3.9 Establishment of natural variational principles for linear, self-adjoint, differential equations
3.10 Maximum, minimum, or a saddle point?
3.11 Constrained variational principles. Lagrange multipliers
3.12 Constrained variational principles. Penalty function and perturbed lagrangian methods
3.13 Least squares approximations
3.14 Concluding remarks ¨C finite difference and boundary methods
3.15 Problems

Chapter 4: Element shape functions
4.1 Introduction
4.2 Standard and hierarchical concepts
4.3 Rectangular elements ¨C some preliminary considerations
4.4 Completeness of polynomials
4.5 Rectangular elements ¨C Lagrange family
4.6 Rectangular elements ¨C ¡®serendipity¡¯ family
4.7 Triangular element family
4.8 Line elements
4.9 Rectangular prisms ¨C Lagrange family
4.10 Rectangular prisms ¨C ¡®serendipity¡¯ family
4.11 Tetrahedral elements
4.12 Other simple three-dimensional elements
4.13 Hierarchic polynomials in one dimension
4.14 Two- and three-dimensional, hierarchical elements of the ¡®rectangle¡¯ or ¡®brick¡¯ type
4.15 Triangle and tetrahedron family
4.16 Improvement of conditioning with hierarchical forms
4.17 Global and local finite element approximation
4.18 Elimination of internal parameters before assembly ¨C substructures
4.19 Concluding remarks
4.20 Problems

Chapter 5: Mapped elements and numerical integration
5.1 Introduction
5.2 Use of ¡®shape functions¡¯ in the establishment of coordinate transformations
5.3 Geometrical conformity of elements
5.4 Variation of the unknown function within distorted, curvilinear elements. Continuity requirements
Contents ix
5.5 Evaluation of element matrices. Transformation in ¦Î, ¦Â, ¦Æ coordinates
5.6 Evaluation of element matrices. Transformation in area and volume coordinates
5.7 Order of convergence for mapped elements
5.8 Shape functions by degeneration
5.9 Numerical integration ¨C rectangular (2D) or brick regions (3D)
5.10 Numerical integration ¨C triangular or tetrahedral regions
5.11 Generation of finite element meshes by mapping. Blending functions
5.12 Required order of numerical integration
5.13 Meshes by blending functions
5.14 Infinite domains and infinite elements
5.15 Singular elements by mapping ¨C use in fracture mechanics, etc.
5.16 Computational advantage of numerically integrated finite elements
5.17 Problems

Chapter 6: Linear elasticity
6.1 Introduction
6.2 Governing equations
6.3 Finite element approximation
6.4 Reporting of results: displacements, strains and stresses
6.5 Numerical examples
6.6 Problems

Chapter 7: Field problems
7.1 Introduction
7.2 General quasi-harmonic equation
7.3 Finite element solution process
7.4 Partial discretization ¨C transient problems
7.5 Numerical examples ¨C an assessment of accuracy
7.6 Concluding remarks
7.7 Problems

Chapter 8: Automatic mesh generation
8.1 Introduction
8.2 Two-dimensional mesh generation ¨C advancing front method
8.3 Surface mesh generation
8.4 Three-dimensional mesh generation ¨C Delaunay triangulation
8.5 Concluding remarks
8.6 Problems

Chapter 9: The patch test and reduced integration
9.1 Introduction
9.2 Convergence requirements
9.3 The simple patch test (tests A and B) ¨C a necessary condition for convergence
9.4 Generalized patch test (test C) and the single-element test
9.5 The generality of a numerical patch test
9.6 Higher order patch tests
9.7 Application of the patch test to plane elasticity elements with ¡®standard¡¯ and ¡®reduced¡¯ quadrature
9.8 Application of the patch test to an incompatible element
9.9 Higher order patch test ¨C assessment of robustness
9.10 Conclusion
9.11 Problems

Chapter 10: Mixed formulation and constraints
10.1 Introduction
10.2 Discretization of mixed forms ¨C some general remarks
10.3 Stability of mixed approximation. The patch test
10.4 Two-field mixed formulation in elasticity
10.5 Three-field mixed formulations in elasticity
10.6 Complementary forms with direct constraint
10.7 Concluding remarks ¨C mixed formulation or a test of element ¡®robustness¡¯
10.8 Problems

Chapter 11: Incompressible problems, mixed methods and other procedures of solution
11.1 Introduction
11.2 Deviatoric stress and strain, pressure and volume change
11.3 Two-field incompressible elasticity (u¨Cp form)
11.4 Three-field nearly incompressible elasticity (u¨Cp¨C¦Åv form)
11.5 Reduced and selective integration and its equivalence to penalized mixed problems
11.6 A simple iterative solution process for mixed problems: Uzawa method
11.7 Stabilized methods for some mixed elements failing the incompressibility patch test
11.8 Concluding remarks
11.9 Exercises

Chapter 12 Multidomain mixed approximations ¨C domain decomposition and ¡®frame¡¯ methods
12.1 Introduction
12.2 Linking of two or more subdomains by Lagrange multipliers
12.3 Linking of two or more subdomains by perturbed lagrangian and penalty methods
12.4 Interface displacement ¡®frame¡¯
12.5 Linking of boundary (or Trefftz)-type solution by the ¡®frame¡¯ of specified displacements
12.6 Subdomains with ¡®standard¡¯ elements and global functions
12.7 Concluding remarks
12.8 Problems

Chapter 13: Errors, recovery processes and error estimates
13.1 Definition of errors
13.2 Superconvergence and optimal sampling points
13.3 Recovery of gradients and stresses
13.4 Superconvergent patch recovery ¨C SPR
13.5 Recovery by equilibration of patches ¨C REP
13.6 Error estimates by recovery
13.7 Residual-based methods
13.8 Asymptotic behaviour and robustness of error estimators ¨C the Babu¡¦ska patch test
13.9 Bounds on quantities of interest
13.10 Which errors should concern us?
13.11 Problems

Chapter 14: Adaptive finite element refinement
14.1 Introduction
14.2 Adaptive h-refinement
14.3 p-refinement and hp-refinement
14.4 Concluding remarks
14.5 Problems

Chapter 15: Point-based and partition of unity approximations
15.1 Introduction
15.2 Function approximation
15.3 Moving least squares approximations ¨C restoration of continuity of approximation
15.4 Hierarchical enhancement of moving least squares expansions
15.5 Point collocation ¨C finite point methods
15.6 Galerkin weighting and finite volume methods
15.7 Use of hierarchic and special functions based on standard finite elements satisfying the partition of unity requirement
15.8 Closure
15.9 Problems

Chapter 16: Semi-discretization and analytical solution
16.1 Introduction
16.2 Direct formulation of time-dependent problems with spatial finite element subdivision
16.3 General classification
16.4 Free response ¨C eigenvalues for second-order problems and dynamic vibration
16.5 Free response ¨C eigenvalues for first-order problems and heat conduction, etc.
16.6 Free response ¨C damped dynamic eigenvalues
16.7 Forced periodic response
16.8 Transient response by analytical procedures
16.9 Symmetry and repeatability
16.10 Problems

Chapter 17: Discrete approximation in time
17.1 Introduction
17.2 Simple time-step algorithms for the first-order equation
17.3 General single-step algorithms for first and second order equations
17.4 Stability of general algorithms
17.5 Multistep recurrence algorithms
17.6 Some remarks on general performance of numerical algorithms
17.7 Time discontinuous Galerkin approximation
17.8 Concluding remarks
17.9 Problems

Chapter 18: Coupled systems
18.1 Coupled problems ¨C definition and classification
18.2 Fluid¨Cstructure interaction (Class I problem)
18.3 Soil¨Cpore fluid interaction (Class II problems)
18.4 Partitioned single-phase systems ¨C implicit¨Cexplicit partitions (Class I problems)
18.5 Staggered solution processes
18.6 Concluding remarks

Chapter 19: Computer procedures for finite element analysis
19.1 Introduction
19.2 Pre-processing module: mesh creation
19.3 Solution module
19.4 Post-processor module
19.5 User modules

Appendix A: Matrix algebra
Appendix B: Tensor-indicial notation in elasticity
Appendix C: Solution of linear algebraic equations
Appendix D: Integration formulae for a triangle
Appendix E: Integration formulae for a tetrahedron
Appendix F: Some vector algebra
Appendix G: Integration by parts
Appendix H: Solutions exact at nodes
Appendix I: Matrix diagonalization or lumping

商品描述(中文翻譯)

**描述**

本書第六版是這本具影響力的暢銷書,提供了有關有限元素法(FEM)最全面且最新的文本和參考資料,適合所有工程師和數學家使用。自從38年前第一版問世以來,《有限元素法》無疑是該方法最具權威性的入門書籍,涵蓋了這一動態主題的最新發展和方法,並且附有豐富的練習題、解題過程和計算機算法。

- 由該領域的主要作者撰寫的經典FEM文本
- 增強內容包括更多的範例和練習,還有一個伴隨網站,提供解答手冊和可下載的算法
- 新增自動網格生成章節,並增加有關形狀函數開發及在解決彈性和場問題中使用高階元素的材料

活躍的研究使《有限元素法》成為建模物理系統的首要工具。它保持了早期版本的全面風格,同時呈現了針對由線性微分方程建模的問題的系統解決方案。

與第二和第三本獨立卷(0750663219和0750663227)一起,《有限元素法套裝》(0750664312)提供了一個強大的資源,涵蓋FEM的理論和應用,包括該方法的基礎、其在先進固體和結構力學及計算流體力學中的應用。

**目錄**

**第1章:標準離散系統與有限元素法的起源**
1.1 介紹
1.2 結構元素與結構系統
1.3 結構的組裝與分析
1.4 邊界條件
1.5 電氣與流體網絡
1.6 一般模式
1.7 標準離散系統
1.8 坐標變換
1.9 問題

**第2章:彈性問題的直接物理方法:平面應力**
2.1 介紹
2.2 有限元素特徵的直接公式化
2.3 全區域的概括 - 放棄內部節點力概念
2.4 位移方法作為總潛能能量的最小化
2.5 收斂標準
2.6 離散化誤差與收斂速率
2.7 元素間不連續的位移函數 - 不符合元素與補丁測試
2.8 有限元素解決過程
2.9 數值範例
2.10 總結
2.11 問題

**第3章:有限元素概念的概括**
3.1 介紹
3.2 與微分方程等價的積分或“弱”陳述
3.3 對積分公式的近似:加權殘差-加萊金方法
3.4 虛功作為固體或流體分析的平衡方程的“弱形式”
3.5 部分離散化
3.6 收斂
3.7 什麼是“變分原理”?
3.8 “自然”變分原理及其與主導微分方程的關係
3.9 為線性、自伴隨微分方程建立自然變分原理
3.10 最大值、最小值或鞍點?
3.11 約束變分原理。拉格朗日乘數
3.12 約束變分原理。懲罰函數與擾動拉格朗日方法
3.13 最小二乘近似
3.14 總結 - 有限差分與邊界方法
3.15 問題

**第4章:元素形狀函數**
4.1 介紹
4.2 標準與分層概念
4.3 矩形元素 - 一些初步考量
4.4 多項式的完整性
4.5 矩形元素 - 拉格朗日族
4.6 矩形元素 - “意外”族
4.7 三角形元素族
4.8 線元素
4.9 矩形棱柱 - 拉格朗日族
4.10 矩形棱柱 - “意外”族
4.11 四面體元素
4.12 其他簡單的三維元素
4.13 一維的分層多項式
4.14 二維和三維的“矩形”或“磚”類型的分層元素
4.15 三角形和四面體族
4.16 透過分層形式改善條件
4.17 全局與局部有限元素近似
4.18 在組裝前消除內部參數 - 子結構
4.19 總結
4.20 問題

**第5章:映射元素與數值積分**
5.1 介紹
5.2 在建立坐標變換中使用“形狀函數”
5.3 元素的幾何一致性
5.4 在扭曲的曲線元素內未知函數的變化。連續性要求
5.5 元素矩陣的評估。在直角坐標、面積和體積坐標中的變換
5.6 映射元素的收斂順序
5.7 透過退化獲得的形狀函數
5.8 數值積分 - 矩形(2D)或磚區域(3D)
5.9 數值積分 - 三角形或四面體區域
5.10 透過映射生成有限元素網格。混合函數
5.11 所需的數值積分順序
5.12 透過混合函數的網格
5.13 無限域與無限元素
5.14 透過映射的奇異元素 - 用於斷裂力學等
5.15 數值積分有限元素的計算優勢
5.16 問題

**第6章:線性彈性**
6.1 介紹
6.2 主導方程
6.3 有限元素近似
6.4 結果報告:位移、應變和應力
6.5 數值範例
6.6 問題

**第7章:場問題**
7.1 介紹
7.2 一般準諧波方程
7.3 有限元素解決過程
7.4 部分離散化 - 瞬態問題
7.5 數值範例 - 準確性評估
7.6 總結
7.7 問題

**第8章:自動網格生成**
8.1 介紹
8.2 二維網格生成 - 前進前沿法
8.3 表面網格生成
8.4 三維網格生成 - 德勞內三角剖分
8.5 總結
8.6 問題

**第9章:補丁測試與減少積分**
9.1 介紹
9.2 收斂要求
9.3 簡單補丁測試(測試A和B) - 收斂的必要條件
9.4 一般化補丁測試(測試C)與單元素測試
9.5 數值補丁測試的普遍性
9.6 高階補丁測試
9.7 將補丁測試應用於具有“標準”和“減少”積分的平面彈性元素
9.8 將補丁測試應用於不相容元素
9.9 高階補丁測試 - 穩健性評估
9.10 結論
9.11 問題

**第10章:混合公式與約束**
10.1 介紹
10.2 混合形式的離散化 - 一些一般性說明
10.3 混合近似的穩定性。補丁測試
10.4 彈性的雙場混合公式
10.5 彈性的三場混合公式
10.6 具有直接約束的互補形式
10.7 總結 - 混合公式或元素的“穩健性”測試
10.8 問題

**第11章:不可壓縮問題、混合方法及其他解決程序**
11.1 介紹
11.2 偏差應力與應變、壓力與體積變化
11.3 兩場不可壓縮彈性(u-Cp形式)
11.4 三場近乎不可壓縮彈性(u-Cp-Cv形式)
11.5 減少與選擇性積分及其與懲罰混合問題的等價性
11.6 混合問題的簡單迭代解決過程:Uzawa方法
11.7 對某些未通過不可壓縮補丁測試的混合元素的穩定化方法
11.8 總結
11.9 練習

**第12章:多域混合近似 - 領域分解與“框架”方法**
12.1 介紹
12.2 透過拉格朗日乘數連接兩個或多個子域
12.3 透過擾動拉格朗日與懲罰方法連接兩個或多個子域
12.4 界面位移“框架”
12.5 透過指定位移的“框架”連接邊界(或Trefftz)類型解
12.6 具有“標準”元素和全局函數的子域
12.7 總結
12.8 問題

**第13章:誤差、恢復過程與誤差估計**
13.1 誤差的定義
13.2 超收斂與最佳取樣點
13.3 梯度與應力的恢復
13.4 超收斂的補丁恢復 - SPR
13.5 透過補丁的平衡恢復 - REP
13.6 透過恢復的誤差估計
13.7 基於殘差的方法
13.8 誤差估計器的漸近行為與穩健性 - Babuška補丁測試
13.9 重要量的界限
13.10 哪些誤差應引起我們的關注?
13.11 問題

**第14章:自適應有限元素細化**
14.1 介紹
14.2 自適應h細化
14.3 p細化與hp細化
14.4 總結
14.5 問題

**第15章:基於點的與統一分割近似**
15.1 介紹
15.2 函數近似
15.3 移動最小二乘近似 - 恢復近似的連續性
15.4 移動最小二乘展開的分層增強
15.5 點配合 - 有限點方法
15.6 加萊金加權與有限體積方法
15.7 使用基於標準有限元素的分層與特殊函數,滿足統一分割要求
15.8 結論
15.9 問題

**第16章:半離散化與解析解**
16.1 介紹
16.2 時變問題的直接公式化,具有空間有限元素細分
16.3 一般分類
16.4 自由響應 - 二階問題的特徵值與動態振動
16.5 自由響應 - 一階問題的特徵值與熱傳導等
16.6 自由響應 - 阻尼動態特徵值
16.7 強迫周期響應
16.8 透過解析程序的瞬態響應
16.9 對稱性與重複性
16.10