Quick Start Guide to Large Language Models: Strategies and Best Practices for Using Chatgpt and Other Llms (Paperback)
暫譯: 大型語言模型快速入門指南:使用 ChatGPT 和其他 LLM 的策略與最佳實踐 (平裝本)
Ozdemir, Sinan
- 出版商: Addison Wesley
- 出版日期: 2023-09-21
- 定價: $1,800
- 售價: 6.6 折 $1,188
- 語言: 英文
- 頁數: 288
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0138199191
- ISBN-13: 9780138199197
-
相關分類:
ChatGPT、LangChain
-
相關翻譯:
快速部署大模型:LLM 策略與實踐 (基於 ChatGPT 等大語言模型) (簡中版)
-
其他版本:
Quick Start Guide to Large Language Models: Strategies and Best Practices for Chatgpt, Embeddings, Fine-Tuning, and Multimodal AI, 2/e (Paperback)
買這商品的人也買了...
-
$650$514 -
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
-
$800$632 -
$480$379 -
$580$452 -
$580$458 -
$780$616 -
$600$468 -
$500$395 -
$2,650$2,597 -
$1,254Machine Learning Fundamentals: A Concise Introduction (Paperback)
-
$1,900$1,805 -
$780$608 -
$650$507 -
$600$420 -
$1,840$1,748 -
$600$468 -
$1,980$1,881 -
$1,719Natural Language Understanding with Python: Combine natural language technology, deep learning, and large language models to create human-like language comprehension in computer systems (Paperback)
-
$551ChatGPT 實應用大全 (全影片·彩色版)
-
$580$458 -
$1,980$1,881 -
$880$695 -
$680$537 -
$474$450
相關主題
商品描述
The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products
Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems.
Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family).
- Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more
- Use APIs and Python to fine-tune and customize LLMs for your requirements
- Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation
- Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting
- Customize LLM embeddings to build a complete recommendation engine from scratch with user data
- Construct and fine-tune multimodal Transformer architectures using opensource LLMs
- Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF)
- Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind
"By balancing the potential of both open- and closed-source models, Quick Start Guide to Large Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the gap between theoretical concepts and practical application."
--Giada Pistilli, Principal Ethicist at HuggingFace
"A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations that leave you smarter about this incredible new field."
--Pete Huang, author of The Neuron
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
商品描述(中文翻譯)
實用的逐步指南:在專案和產品中大規模使用大型語言模型
大型語言模型(LLMs),如 ChatGPT,展現了驚人的能力,但其規模和複雜性使許多從業者卻步。在 大型語言模型快速入門指南 中,開創性的數據科學家和人工智慧企業家 Sinan Ozdemir 消除了這些障礙,提供了一個與 LLMs 合作、整合和部署以解決實際問題的指南。
Ozdemir 整合了所有您需要開始的內容,即使您對 LLMs 沒有直接經驗:逐步指導、最佳實踐、真實案例研究、實作練習等等。在此過程中,他分享了 LLMs 內部運作的見解,幫助您優化模型選擇、數據格式、參數和性能。您還可以在伴隨網站上找到更多資源,包括用於處理開源和閉源 LLMs 的示例數據集和代碼,例如來自 OpenAI(GPT-4 和 ChatGPT)、Google(BERT、T5 和 Bard)、EleutherAI(GPT-J 和 GPT-Neo)、Cohere(Command 系列)和 Meta(BART 和 LLaMA 系列)的模型。
- 學習關鍵概念:預訓練、遷移學習、微調、注意力、嵌入、標記化等
- 使用 API 和 Python 根據您的需求微調和自定義 LLMs
- 構建完整的神經/語義信息檢索系統,並連接到對話式 LLMs 以進行檢索增強生成
- 掌握高級提示工程技術,如輸出結構化、思維鏈和語義少量提示
- 自定義 LLM 嵌入,從頭開始構建完整的推薦引擎,使用用戶數據
- 使用開源 LLMs 構建和微調多模態 Transformer 架構
- 使用人類和 AI 反饋的強化學習(RLHF/RLAIF)對 LLMs 進行對齊
- 將提示和自定義微調的 LLMs 部署到雲端,考慮可擴展性和評估管道
“通過平衡開源和閉源模型的潛力,《大型語言模型快速入門指南》成為理解和使用 LLMs 的全面指南,彌合理論概念與實際應用之間的鴻溝。”
--Giada Pistilli,HuggingFace 首席倫理學家
“這是一個令人耳目一新且鼓舞人心的資源。充滿實用指導和清晰解釋,讓您對這個令人驚嘆的新領域有更深入的了解。”
--Pete Huang,《神經元》作者
註冊您的書籍以方便訪問下載、更新和/或更正,隨著它們的可用性而提供。詳情請參見書內。
作者簡介
Sinan Ozdemir is currently the founder and CTO of Shiba Technologies. Sinan is a former lecturer of Data Science at Johns Hopkins University and the author of multiple textbooks on data science and machine learning. Additionally, he is the founder of the recently acquired Kylie.ai, an enterprise-grade conversational AI platform with RPA capabilities. He holds a master's degree in Pure Mathematics from Johns Hopkins University and is based in San Francisco, CA.
作者簡介(中文翻譯)
Sinan Ozdemir 目前是 Shiba Technologies 的創辦人及首席技術官。Sinan 曾擔任約翰霍普金斯大學的資料科學講師,並且是多本資料科學和機器學習教科書的作者。此外,他還是最近被收購的 Kylie.ai 的創辦人,這是一個具備 RPA 功能的企業級對話式人工智慧平台。他擁有約翰霍普金斯大學的純數學碩士學位,現居於加州舊金山。