Data Science with Llms: Analyzing Text, Tables, Images and Sound (Paperback)
暫譯: 使用大型語言模型的資料科學:文本、表格、圖像和聲音分析 (平裝本)
Trummer, Immanuel
- 出版商: Manning
- 出版日期: 2025-05-27
- 售價: $1,500
- 貴賓價: 9.5 折 $1,425
- 語言: 英文
- 頁數: 256
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1633437647
- ISBN-13: 9781633437647
-
相關分類:
Large language model、ChatGPT
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$880$695 -
$1,200$948 -
$880$660 -
$630$498 -
$680$537 -
$880$695 -
$650$618
相關主題
商品描述
Speed up common data science tasks with AI assistants like ChatGPT and Large Language Models (LLMs) from Anthropic, Cohere, AI21, Hugging Face, and more!
Using ChatGPT and other AI-powered tools, you can analyze almost any kind of data with just a few short lines of plain English. In Data Science with LLMs, you'll learn important techniques for streamlining your data science practice, expanding your skillset and saving you hours--or even days--of time.
Inside, you'll learn how to use AI assistants to:
- Analyze text, tables, images, and audio files
- Extract information from multi-modal data lakes
- Classify, cluster, transform, and query multimodal data
- Build natural language query interfaces over structured data sources
- Use LangChain to build complex data analysis pipelines
- Prompt engineering and model configuration
This practical book takes you from your first prompts through advanced techniques like building automated analysis pipelines and fine-tuning existing models. You'll learn how to create meaningful reports, generate informative graphs, and much more.
Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications.
About the book
Data Science with LLMs teaches you to use a new generation of AI assistants and Large Language Models (LLMs) to simplify and accelerate common data science tasks. Cornell professor and long-time LLM advocate Immanuel Trummer reveals techniques he's pioneered for getting the most out of LLMs in data science, including model selection and specialization, techniques for tuning parameters, and reliable prompt templates.
You'll start with an in-depth exploration of how LLMs work. Then, you'll dive into no-code data analysis with LLMs, creating custom operators with the OpenAI Python API, and building complex data analysis pipelines with the cutting edge LangChain framework.
About the reader
For data scientists, data analysts, and others who are interested in making their work easier through the use of artificial intelligence techniques. Readers should have a basic understanding of the Python programming language.
About the author
Immanuel Trummer is an assistant professor for computer science at Cornell University and leader of the Cornell Database Group. His papers have been selected for "Best of VLDB", "Best of SIGMOD", for the ACM SIGMOD Research Highlight Award, and for publication in CACM as CACM Research Highlight. Immanuel's online course on data management has reached over a million views on YouTube. Over the past few years, his group has published extensively on projects that apply large language models in the context of data science.
商品描述(中文翻譯)
利用 ChatGPT 和 Anthropic、Cohere、AI21、Hugging Face 等大型語言模型 (LLMs) 的 AI 助手加速常見的資料科學任務!
使用 ChatGPT 和其他 AI 驅動的工具,您可以僅用幾行簡單的英文分析幾乎任何類型的資料。在 使用 LLMs 的資料科學 一書中,您將學習到簡化資料科學實踐的重要技術,擴展您的技能組合,並節省數小時甚至數天的時間。
在書中,您將學習如何使用 AI 助手來:
- 分析文本、表格、圖像和音頻檔案
- 從多模態資料湖中提取資訊
- 對多模態資料進行分類、聚類、轉換和查詢
- 在結構化資料源上建立自然語言查詢介面
- 使用 LangChain 建立複雜的資料分析管道
- 進行提示工程和模型配置
這本實用的書籍將帶您從第一個提示開始,學習到自動化分析管道的建立和現有模型的微調等進階技術。您將學會如何創建有意義的報告、生成資訊圖表,以及更多內容。
購買印刷版書籍可獲得 Manning Publications 提供的免費 PDF 和 ePub 格式電子書。
關於本書
《使用 LLMs 的資料科學》教您如何使用新一代的 AI 助手和大型語言模型 (LLMs) 來簡化和加速常見的資料科學任務。康奈爾大學教授及長期 LLM 擁護者 Immanuel Trummer 揭示了他在資料科學中充分利用 LLMs 的技術,包括模型選擇和專業化、參數調整技術以及可靠的提示模板。
您將從深入探索 LLMs 的運作開始。接著,您將深入無需編碼的 LLMs 資料分析,使用 OpenAI Python API 創建自定義運算子,並使用尖端的 LangChain 框架建立複雜的資料分析管道。
關於讀者
本書適合資料科學家、資料分析師及其他希望透過人工智慧技術簡化工作的人士。讀者應具備基本的 Python 程式語言理解。
關於作者
Immanuel Trummer 是康奈爾大學計算機科學的助理教授,也是康奈爾資料庫小組的負責人。他的論文曾獲選為「最佳 VLDB」、「最佳 SIGMOD」,以及 ACM SIGMOD 研究亮點獎,並在 CACM 發表為 CACM 研究亮點。Immanuel 的資料管理線上課程在 YouTube 上的觀看次數已超過一百萬。在過去幾年中,他的團隊在應用大型語言模型於資料科學的專案上發表了大量研究。
作者簡介
Immanuel Trummer is an assistant professor for computer science at Cornell University and leader of the Cornell Database Group. His papers have been selected for "Best of VLDB", "Best of SIGMOD", for the ACM SIGMOD Research Highlight Award, and for publication in CACM as CACM Research Highlight. Immanuel's online course on data management has reached over a million views on YouTube. Over the past few years, his group has published extensively on projects that apply large language models in the context of data science.
作者簡介(中文翻譯)
伊曼紐·特魯默是康奈爾大學計算機科學的助理教授,也是康奈爾數據庫小組的負責人。他的論文曾獲選為「最佳 VLDB」、「最佳 SIGMOD」,以及 ACM SIGMOD 研究亮點獎,並在 CACM 發表為 CACM 研究亮點。伊曼紐的數據管理線上課程在 YouTube 上的觀看次數已超過一百萬。在過去幾年中,他的團隊在應用大型語言模型於數據科學的項目上發表了大量研究。