Advanced Forecasting with Python: Mastering Modern Forecasting Techniques with Machine Learning and Cloud Tools
暫譯: 使用 Python 進行高級預測:掌握現代預測技術與機器學習及雲端工具

Korstanje, Joos

  • 出版商: Apress
  • 出版日期: 2025-11-25
  • 售價: $1,590
  • 貴賓價: 9.5$1,511
  • 語言: 英文
  • 頁數: 440
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798868820274
  • ISBN-13: 9798868820274
  • 相關分類: PythonMachine LearningMicrosoft Azure
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Advanced Forecasting with Python, Second Edition, is a comprehensive and practical guide to mastering modern forecasting techniques using Python. Designed for data scientists, analysts, and machine learning practitioners, this updated edition bridges the gap between classical forecasting models and cutting-edge, AI-powered techniques that are reshaping the field.

The book begins with foundational models like AR, MA, ARIMA, and SARIMA, offering intuitive and mathematical explanations alongside hands-on Python implementations. It then expands into multivariate models (VAR, VARMAX), supervised machine learning (Random Forests, XGBoost, LightGBM, CatBoost), and deep learning architectures such as LSTMs, NBEATS, and Transformers. Each chapter not only teaches the theory and code but also tracks model performance using MLflow, enabling efficient benchmarking and experimentation management. The second edition stands out for its extensive new content. Readers will now explore Orbit by Uber, AutoGluon by AWS, Prophet by Meta, Microsoft Azure AutoML, Google GCP AutoML, and TimeGPT by Nixtla, equipping them with the latest tools from top cloud providers. These additions make sure that readers stay current in an ever-evolving landscape. Moreover, the new chapters highlight practical deployment strategies and trade-offs between performance, explainability, and scalability.

Whether you are just beginning your forecasting journey or seeking to enhance your expertise with state-of-the-art tools and cloud-based solutions, this book offers a rich, hands-on learning experience. With step-by-step Python examples, detailed model insights, and modern forecasting workflows, it is an indispensable resource for staying ahead in the realm of predictive analytics.

You Will:

  • Build robust forecasting solutions using Python
  • Gain both intuitive and mathematical insights into traditional and cutting-edge forecasting models
  • Master model evaluation through cross-validation, backtesting, and MLflow-based tracking
  • Leverage cloud-based platforms and Model-as-a-Service tools for scalable forecasting deployments

Who this book is for:

This book is ideal for data scientists, analysts, and ML practitioners working on real-world forecasting problems. It suits both intermediate learners and experienced professionals looking to master state-of-the-art forecasting techniques.

商品描述(中文翻譯)

《使用 Python 進行高級預測(第二版)》是一本全面且實用的指南,旨在幫助讀者掌握使用 Python 的現代預測技術。這本更新版專為數據科學家、分析師和機器學習從業者設計,彌補了傳統預測模型與前沿 AI 驅動技術之間的差距,這些技術正在重塑該領域。

本書從基礎模型開始,如自回歸 (AR)、移動平均 (MA)、自回歸整合移動平均 (ARIMA) 和季節性自回歸整合移動平均 (SARIMA),提供直觀和數學的解釋,並附上實作的 Python 範例。接著擴展到多變量模型 (VAR、VARMAX)、監督式機器學習 (隨機森林、XGBoost、LightGBM、CatBoost) 和深度學習架構,如長短期記憶網絡 (LSTMs)、NBEATS 和 Transformers。每一章不僅教授理論和程式碼,還使用 MLflow 追蹤模型性能,實現高效的基準測試和實驗管理。第二版的特色在於其廣泛的新內容。讀者將探索 Uber 的 Orbit、AWS 的 AutoGluon、Meta 的 Prophet、Microsoft Azure AutoML、Google GCP AutoML 和 Nixtla 的 TimeGPT,這些都是來自頂尖雲服務提供商的最新工具。這些新增內容確保讀者在不斷演變的環境中保持最新。此外,新章節強調實際部署策略以及性能、可解釋性和可擴展性之間的權衡。

無論您是剛開始預測之旅,還是希望利用最先進的工具和基於雲的解決方案來提升專業知識,本書都提供了豐富的實作學習體驗。透過逐步的 Python 範例、詳細的模型見解和現代預測工作流程,它是您在預測分析領域保持領先的不可或缺的資源。

您將會:
- 使用 Python 建立穩健的預測解決方案
- 獲得對傳統和前沿預測模型的直觀和數學見解
- 精通透過交叉驗證、回測和基於 MLflow 的追蹤進行模型評估
- 利用基於雲的平台和模型即服務 (Model-as-a-Service) 工具進行可擴展的預測部署

本書適合對象:
本書非常適合從事現實世界預測問題的數據科學家、分析師和機器學習從業者。它適合中級學習者和希望掌握最先進預測技術的經驗豐富的專業人士。

作者簡介

Joos Korstanje is a data scientist and author specializing in machine learning and geospatial analysis. He has authored influential books, including "Advanced Forecasting with Python" and " Machine Learning on Geographical Data Using Python " published by Apress, providing practical insights into Forecasting and real-time data processing. With experience at institutions like Crédit Agricole CIB in Paris, Joos brings a blend of academic knowledge and industry expertise to his work.

作者簡介(中文翻譯)

Joos Korstanje 是一位數據科學家和專注於機器學習及地理空間分析的作者。他撰寫了多本有影響力的書籍,包括由 Apress 出版的《Advanced Forecasting with Python》和《Machine Learning on Geographical Data Using Python》,提供了有關預測和實時數據處理的實用見解。Joos 曾在巴黎的 Crédit Agricole CIB 等機構工作,將學術知識與行業專業經驗相結合,應用於他的工作中。