Quick Start Guide to LLMs: Hands-On with Large Language Models
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-07-04
- 售價: $1,100
- 貴賓價: 9.5 折 $1,045
- 語言: 英文
- 頁數: 62
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798332227615
- ISBN-13: 9798332227615
-
相關分類:
LangChain
海外代購書籍(需單獨結帳)
相關主題
商品描述
"Quick Start Guide to LLMs: Hands-On with Large Language Models" is a comprehensive yet concise manual designed to equip readers with the knowledge and skills needed to understand and utilize Large Language Models (LLMs). The book delves into the fascinating world of LLMs, exploring their significance, architecture, and practical applications.
The introduction sets the stage by explaining what LLMs are and why they are important in today's AI landscape. It provides an overview of the book, outlining the key topics covered in each chapter.
Chapter 1, "Understanding the Basics," lays the foundation by discussing the core concepts, history, and evolution of LLMs. It introduces key terminology and explains the fundamental principles that underpin these powerful models.
In Chapter 2, "Getting Started with LLMs," readers learn how to set up their environment, including software and hardware requirements. This chapter provides step-by-step instructions for installing necessary tools and libraries, making it easy for beginners to start working with LLMs.
Chapter 3, "Core Components and Architecture," takes a deep dive into the internal workings of LLMs. It covers model architecture, training data, preprocessing, and techniques for fine-tuning and customization, offering readers a thorough understanding of how these models operate.
Chapter 4, "Hands-On with LLMs," is the heart of the book. It guides readers through basic operations such as text generation, text completion, and summarization. It also explores advanced use cases, including translation, question answering, and building dialogue systems, with practical examples and code snippets.
Chapter 5, "Practical Applications," shows how to integrate LLMs into projects with real-world case studies and examples. Readers will learn how to define problems, choose the right models, implement solutions, and deploy applications effectively.
In Chapter 6, "Best Practices and Optimization," the book offers strategies for improving performance, managing costs, and ensuring efficient operation. It covers topics like model optimization, resource management, and cost reduction techniques.
Chapter 7, "Ethical Considerations," addresses the crucial issues of bias, fairness, and privacy. It provides guidelines for mitigating risks and ensuring ethical use of LLMs.
Finally, Chapter 8, "Future Trends and Innovations," looks ahead to the evolving landscape of LLMs. It discusses emerging technologies, industry trends, and the future directions of AI, helping readers stay informed and prepared for what's next.
"Quick Start Guide to LLMs: Hands-On with Large Language Models" is an essential resource for anyone looking to harness the power of LLMs, offering practical insights and hands-on experience in building and deploying AI solutions.
商品描述(中文翻譯)
《大型語言模型快速入門指南:實作大型語言模型》是一本全面而簡明的手冊,旨在為讀者提供理解和利用大型語言模型(LLMs)所需的知識和技能。這本書深入探討了LLMs的迷人世界,探索其重要性、架構和實際應用。
導言部分說明了LLMs是什麼以及它們在當今人工智慧領域中的重要性,並提供了本書的概述,概述了每章所涵蓋的主要主題。
第一章《理解基礎》奠定了基礎,討論了LLMs的核心概念、歷史和演變。它介紹了關鍵術語,並解釋了支撐這些強大模型的基本原則。
在第二章《開始使用LLMs》中,讀者將學習如何設置環境,包括軟體和硬體要求。本章提供了安裝必要工具和庫的逐步指導,使初學者能夠輕鬆開始使用LLMs。
第三章《核心組件與架構》深入探討了LLMs的內部運作。它涵蓋了模型架構、訓練數據、預處理以及微調和自定義的技術,讓讀者全面了解這些模型的運作方式。
第四章《實作LLMs》是本書的核心。它指導讀者進行基本操作,如文本生成、文本補全和摘要。它還探討了進階用例,包括翻譯、問答和構建對話系統,並提供實際範例和程式碼片段。
第五章《實際應用》展示了如何將LLMs整合到項目中,並提供真實案例研究和範例。讀者將學習如何定義問題、選擇合適的模型、實施解決方案並有效部署應用程式。
在第六章《最佳實踐與優化》中,本書提供了改善性能、管理成本和確保高效運作的策略。它涵蓋了模型優化、資源管理和成本降低技術等主題。
第七章《倫理考量》探討了偏見、公平性和隱私等重要議題。它提供了減輕風險和確保LLMs倫理使用的指導方針。
最後,第八章《未來趨勢與創新》展望了LLMs不斷演變的格局。它討論了新興技術、行業趨勢和人工智慧的未來方向,幫助讀者保持資訊靈通,為未來做好準備。
《大型語言模型快速入門指南:實作大型語言模型》是任何希望利用LLMs力量的人的重要資源,提供了實用的見解和實作經驗,幫助讀者構建和部署人工智慧解決方案。