Generative AI System Design: A Practical Guide

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-06-26
  • 售價: $1,030
  • 貴賓價: 9.5$979
  • 語言: 英文
  • 頁數: 118
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798329495799
  • ISBN-13: 9798329495799
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

"Generative AI System Design: A Practical Guide" offers a comprehensive exploration of designing and implementing generative artificial intelligence systems. This book serves as an essential resource for both beginners and experienced professionals looking to delve into the world of generative AI with a focus on practical applications and real-world scenarios.

The book begins with an introduction to generative AI, covering its historical background, key applications across various industries, and the foundational principles underlying generative models. Readers will gain a solid understanding of machine learning basics, deep dive into probabilistic models, neural networks, and explore advanced techniques such as autoencoders, variational autoencoders (VAEs), generative adversarial networks (GANs), and flow-based models.

A significant portion of the book is dedicated to advanced topics in generative AI, including reinforcement learning for generative models, self-supervised learning, transfer learning, and multi-modal generative models. Special attention is given to generative AI system design principles, covering system architecture, data management, model training, scalability, performance optimization, and integration with existing systems.

The book provides hands-on tutorials with complete solutions, code examples, case studies from healthcare, finance, art, and gaming industries, and practical exercises to reinforce learning. It emphasizes performance optimization techniques such as model compression, efficient training methods, hardware acceleration using GPUs and TPUs, and strategies for reducing inference latency.

Furthermore, "Generative AI System Design: A Practical Guide" addresses deployment strategies, monitoring, continuous learning, and maintenance of generative AI systems in production environments. It explores DevOps practices tailored for generative AI, including continuous integration and deployment, infrastructure as code, automated testing, monitoring, and ensuring scalability and high availability.

This guide concludes with insights into emerging trends, innovations in model architectures, the future of work with generative AI, and societal impacts. It aims to equip readers with the knowledge and skills to design, deploy, and optimize generative AI systems effectively.

商品描述(中文翻譯)

《生成式人工智慧系統設計:實用指南》提供了對設計和實施生成式人工智慧系統的全面探索。本書是初學者和有經驗的專業人士深入了解生成式人工智慧世界的重要資源,重點在於實際應用和真實場景。

本書首先介紹生成式人工智慧,涵蓋其歷史背景、在各行各業的關鍵應用,以及生成模型的基本原則。讀者將獲得機器學習基礎的扎實理解,深入探討概率模型、神經網絡,並探索自動編碼器、變分自動編碼器(VAEs)、生成對抗網絡(GANs)和基於流的模型等先進技術。

本書的相當一部分專注於生成式人工智慧的進階主題,包括生成模型的強化學習、自我監督學習、遷移學習和多模態生成模型。特別關注生成式人工智慧系統設計原則,涵蓋系統架構、數據管理、模型訓練、可擴展性、性能優化以及與現有系統的整合。

本書提供了實作教程,包含完整解決方案、代碼範例、來自醫療、金融、藝術和遊戲產業的案例研究,以及加強學習的實際練習。它強調性能優化技術,如模型壓縮、高效訓練方法、使用GPU和TPU的硬體加速,以及減少推理延遲的策略。

此外,《生成式人工智慧系統設計:實用指南》還探討了生成式人工智慧系統在生產環境中的部署策略、監控、持續學習和維護。它探索了針對生成式人工智慧的DevOps實踐,包括持續集成和部署、基礎設施即代碼、自動化測試、監控,以及確保可擴展性和高可用性。

本指南最後提供了對新興趨勢、模型架構創新、生成式人工智慧未來工作的展望以及社會影響的見解。它旨在使讀者具備有效設計、部署和優化生成式人工智慧系統的知識和技能。