Generative AI for Data Privacy: Unlocking Innovation, Protecting Rights

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-05-20
  • 售價: $670
  • 貴賓價: 9.5$637
  • 語言: 英文
  • 頁數: 26
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798326150684
  • ISBN-13: 9798326150684
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The exciting world of generative AI offers immense potential for innovation, but its reliance on vast amounts of data raises critical data privacy concerns. This book explores this dynamic landscape, equipping you to understand both the power and the potential pitfalls of generative AI.

Part 1 dives into the core concepts of generative models, from GANs and VAEs to their diverse capabilities. It then explores the data privacy landscape, highlighting the importance of regulations like GDPR and CCPA in the age of AI. You'll gain insights into the specific challenges generative AI poses to data privacy, such as the risk of data leakage through seemingly anonymized training data.

Part 2 delves deeper into these privacy risks. You'll learn how generative models can unintentionally reveal information from their training data and discover techniques to identify and mitigate these leakage risks. The book also explores the potential of synthetic data - artificially generated data that resembles real data but protects privacy. You'll understand the advantages and limitations of synthetic data and explore methods for ensuring privacy-preserving generation techniques.

Part 3 focuses on solutions and building trust. It examines cutting-edge privacy-enhancing techniques for generative AI, such as differential privacy and federated learning. These techniques allow training on data while keeping it encrypted or distributed, safeguarding individual privacy. The book also emphasizes the importance of user control and transparency in generative AI development. You'll explore ways to empower users with control over their data and advocate for clear explanations of how generative models function.

Part 4 explores the evolving legal and ethical landscape surrounding generative AI. You'll discover potential regulatory approaches for governing its use, emphasizing the need to balance innovation with comprehensive data privacy protection. Finally, the book looks towards the future, exploring the societal and ethical considerations of generative AI. You'll gain insights into potential biases in models and the impact of AI-generated content on creativity. The book concludes with recommendations for responsible development and use of generative AI, ensuring it thrives as a force for good that respects individual privacy.

This comprehensive book empowers you to navigate the world of generative AI responsibly. Whether you're a developer, a data privacy professional, or simply curious about this transformative technology, "Generative AI for Data Privacy" provides the knowledge and tools you need to understand its potential and navigate its complexities.

商品描述(中文翻譯)

生成式人工智慧的激動人心的世界提供了巨大的創新潛力,但其對大量數據的依賴也引發了關鍵的數據隱私問題。本書探討了這個動態的領域,幫助您理解生成式人工智慧的力量及其潛在的陷阱。

第一部分深入探討生成模型的核心概念,從GANs和VAEs到它們的多樣化能力。接著探討數據隱私的現狀,強調在人工智慧時代,像GDPR和CCPA這樣的法規的重要性。您將獲得對生成式人工智慧對數據隱私所帶來的具體挑戰的見解,例如通過看似匿名的訓練數據洩露數據的風險。

第二部分更深入地探討這些隱私風險。您將學習生成模型如何無意中揭示其訓練數據中的信息,並發現識別和減輕這些洩露風險的技術。本書還探討了合成數據的潛力——這是一種人工生成的數據,類似於真實數據但能保護隱私。您將了解合成數據的優勢和局限性,並探索確保隱私保護生成技術的方法。

第三部分專注於解決方案和建立信任。它檢視了生成式人工智慧的前沿隱私增強技術,如差分隱私和聯邦學習。這些技術允許在數據上進行訓練,同時保持數據的加密或分散,保護個人隱私。本書還強調用戶控制和透明度在生成式人工智慧開發中的重要性。您將探索如何賦予用戶對其數據的控制權,並倡導對生成模型運作方式的清晰解釋。

第四部分探討了圍繞生成式人工智慧的法律和倫理環境的演變。您將發現治理其使用的潛在監管方法,強調在創新與全面的數據隱私保護之間取得平衡的必要性。最後,本書展望未來,探討生成式人工智慧的社會和倫理考量。您將獲得對模型潛在偏見的見解,以及人工智慧生成內容對創造力的影響。本書以對負責任的生成式人工智慧開發和使用的建議作結,確保其作為尊重個人隱私的良善力量而蓬勃發展。

這本全面的書籍使您能夠負責任地導航生成式人工智慧的世界。無論您是開發者、數據隱私專業人士,還是對這項變革性技術感到好奇的讀者,《生成式人工智慧與數據隱私》都提供了您理解其潛力和應對其複雜性的知識和工具。