Mastering MCP Servers: The Ultimate Guide to Building Context-Aware AI Systems with Model Context Protocol
暫譯: 掌握MCP伺服器:建構具上下文感知的AI系統的終極指南
Jones, Camila
- 出版商: Independently Published
- 出版日期: 2025-04-25
- 售價: $1,100
- 貴賓價: 9.5 折 $1,045
- 語言: 英文
- 頁數: 476
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798281340045
- ISBN-13: 9798281340045
-
相關分類:
AI Coding
立即出貨 (庫存=1)
買這商品的人也買了...
-
嵌入式系統設計實務-電路與驅動程式$250$225 -
Using SQLite (Paperback)$2,080$1,976 -
ASP.NET 本質論$520$442 -
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback) -
SQL Server 效能調校$450$351 -
Beginning Big Data with Power BI and Excel 2013: Big Data Processing and Analysis Using PowerBI in Excel 2013 (Paperback)$1,680$1,596 -
$474系統分析與設計:敏捷疊代方法(原書第6版) -
IoT Solutions in Microsoft's Azure IoT Suite: Data Acquisition and Analysis in the Real World$3,310$3,145 -
$796深度學習 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
$534JSON 實戰 -
$284大數據技術 -
手機攝影必學 BOOK:用OX帶你學會拍人物、食物、風景等情境照片$398$299 -
創意競擇:從賈伯斯黃金年代的軟體設計機密流程,窺見蘋果的創意方法、本質與卓越關鍵$460$391 -
Web 開發者一定要懂的駭客攻防術 (Web Security for Developers: Real Threats, Practical Defense)$420$332 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473 -
Martin Fowler 的企業級軟體架構模式:軟體重構教父傳授 51個模式,活用設計思考與架構決策 (Patterns of Enterprise Application Architecture)$800$624 -
我懂了!專案管理 (暢銷紀念版)$400$316 -
電腦視覺機器學習實務|建立端到端的影像機器學習 (Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images)$780$616 -
Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback)$2,185$2,070 -
ASP.NET Core Razor Pages in Action (Paperback)$2,310$2,195 -
無瑕的程式碼 軟體工匠篇:程式設計師必須做到的紀律、標準與倫理 (Clean Craftsmanship: Disciplines, Standards, and Ethics)$720$562 -
從源頭就優化 - 動手開發自己的編譯器實戰$880$695 -
UX 商業價值實現之道|打造成功的數位產品服務 (UX for Business: How to Design Valuable Digital Companies)$780$616 -
建構可擴展系統|設計分散式架構 (Foundations of Scalable Systems: Designing Distributed Architectures)$780$616
相關主題
商品描述
Mastering MCP Servers
The Ultimate Guide to Building Context-Aware AI Systems with Model Context Protocol
Unlock the power of context-aware AI by mastering the Model Context Protocol (MCP)-the JSON-RPC-based standard that's redefining how intelligent systems integrate tools, services, and data. Whether you're an AI engineer, DevOps specialist, or architect, this end-to-end guide delivers the deep technical know-how and real-world examples you need to design, deploy, and scale robust AI workflows.
Inside this book, you'll discover:
- Core Concepts & Architecture
Learn MCP fundamentals: JSON-RPC envelopes, rich context propagation, and the tool manifest that makes discovery and integration seamless. - Building Context-Aware Pipelines
Hands-on tutorials for crafting dynamic AI workflows-batch calls, streaming adapters, and branching logic-all powered by MCP's unified interface. - Industry Case Studies
See MCP in action across finance, healthcare, e-commerce, robotics, and smart cities, with code samples that connect market data, EHR systems, IoT sensors, and more. - Scaling & Deployment
Best practices for containerization (Docker, Kubernetes), cloud rollouts (AWS, GCP, Azure), CI/CD pipelines, load balancing, and auto-scaling to achieve high availability. - Security & Maintenance
Enforce JSON-Schema validation, OAuth2/JWT or mTLS authentication, rate-limiting, and real-time monitoring-plus scheduled patching, backups, and chaos-engineering drills. - Troubleshooting & Q&A
A comprehensive guide to diagnose connectivity errors, streaming disconnects, schema drift, and performance bottlenecks, with review questions to cement your understanding. - Future Trends & Community
Explore cutting-edge topics-LLM-driven workflow synthesis, edge-native runtimes, federated context sharing-and learn how to contribute adapters, plugins, and enhancements.
With clear explanations, complete code listings, and downloadable templates, Mastering MCP Servers empowers you to build AI systems that are modular, auditable, and resilient. Dive in and transform your next project into a context-aware powerhouse.
商品描述(中文翻譯)
掌握 MCP 伺服器
使用模型上下文協議建立上下文感知 AI 系統的終極指南
透過掌握模型上下文協議 (Model Context Protocol, MCP) 的力量,解鎖上下文感知 AI 的潛能。MCP 是一種基於 JSON-RPC 的標準,正在重新定義智能系統如何整合工具、服務和數據。無論您是 AI 工程師、DevOps 專家還是架構師,這本端到端的指南提供了設計、部署和擴展穩健 AI 工作流程所需的深厚技術知識和實際範例。
在這本書中,您將發現:
- 核心概念與架構
學習 MCP 基礎知識:JSON-RPC 封包、豐富的上下文傳播,以及使發現和整合無縫的工具清單。
- 建立上下文感知管道
實作教程,教您如何打造動態 AI 工作流程——批次呼叫、串流適配器和分支邏輯,這一切都由 MCP 的統一介面驅動。
- 行業案例研究
觀察 MCP 在金融、醫療保健、電子商務、機器人技術和智慧城市中的應用,並提供連接市場數據、電子健康紀錄系統、物聯網感測器等的程式碼範例。
- 擴展與部署
容器化 (Docker, Kubernetes)、雲端部署 (AWS, GCP, Azure)、CI/CD 管道、負載平衡和自動擴展的最佳實踐,以實現高可用性。
- 安全性與維護
強制執行 JSON-Schema 驗證、OAuth2/JWT 或 mTLS 認證、速率限制和實時監控,並進行定期修補、備份和混沌工程演練。
- 故障排除與問答
全面指南,幫助診斷連接錯誤、串流斷開、架構漂移和性能瓶頸,並提供回顧問題以鞏固您的理解。
- 未來趨勢與社群
探索前沿主題——基於 LLM 的工作流程合成、邊緣原生執行環境、聯邦上下文共享,並學習如何貢獻適配器、插件和增強功能。
透過清晰的解釋、完整的程式碼清單和可下載的範本,《掌握 MCP 伺服器》使您能夠構建模組化、可審計和具韌性的 AI 系統。深入探索,將您的下一個專案轉變為一個上下文感知的強大系統。