Differential Geometry and Riemannian Manifolds
暫譯: 微分幾何與黎曼流形
Sauvigny, Friedrich
- 出版商: World Scientific Pub
- 出版日期: 2025-10-06
- 售價: $4,680
- 貴賓價: 9.5 折 $4,446
- 語言: 英文
- 頁數: 376
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9819816165
- ISBN-13: 9789819816163
-
相關分類:
微積分 Calculus
海外代購書籍(需單獨結帳)
商品描述
This textbook focuses on the study of curves and surfaces, applying modern differential equation theory to geometric problems. By introducing isothermal parameters, it simplifies the fundamental equations of surface theory, leading to clear derivations of results like those of H Hopf and S Bernstein for surfaces of constant and vanishing mean curvature.Deviating from traditional approaches, the book first treats n-dimensional Riemannian spaces by a corresponding metric, then constructs Riemannian manifolds through transition conditions. The ultimate goal is to prove the Hadamard-Cartan theorem on the diffeomorphic character of the exponential mapping in Riemannian manifolds with nonpositive sectional curvature. By considering curves and surfaces in their optimal parametrization, the resulting ODEs and complex PDEs can be analytically solved, eliminating the need for intricate tensor calculus.The approach follows that of G Monge in his treatise L'Application de l'Analyse à la Géométrie, applying analytical techniques to geometric problems. Building on this foundation, the book uses modern theory of ODEs and PDEs to study the local and global results for curves and surfaces and their relevant curvatures.
商品描述(中文翻譯)
本教科書專注於曲線和曲面的研究,將現代微分方程理論應用於幾何問題。透過引入等溫參數,它簡化了曲面理論的基本方程,導致像 H Hopf 和 S Bernstein 對於常數和消失平均曲率的曲面結果的清晰推導。本書偏離傳統方法,首先通過相應的度量處理 n 維黎曼空間,然後通過過渡條件構建黎曼流形。最終目標是證明 Hadamard-Cartan 定理,該定理關於具有非正截面曲率的黎曼流形中指數映射的微分同胚特性。通過考慮曲線和曲面的最佳參數化,所得到的常微分方程(ODE)和複雜的偏微分方程(PDE)可以進行解析解,消除了對複雜張量微積分的需求。這種方法遵循 G Monge 在其著作《L'Application de l'Analyse à la Géométrie》中所採用的方式,將分析技術應用於幾何問題。在此基礎上,本書利用現代常微分方程和偏微分方程的理論來研究曲線和曲面的局部及全球結果及其相關曲率。