Large-Scale Graph Analysis: System, Algorithm and Optimization
暫譯: 大規模圖形分析:系統、演算法與優化

Shao, Yingxia, Cui, Bin, Chen, Lei

  • 出版商: Springer
  • 出版日期: 2020-07-02
  • 售價: $6,780
  • 貴賓價: 9.5$6,441
  • 語言: 英文
  • 頁數: 193
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9811539278
  • ISBN-13: 9789811539275
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms - the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.

This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology for designing efficient large-scale graph algorithms.

商品描述(中文翻譯)

本書向讀者介紹了一種針對圖計算系統的大規模圖演算法優化的工作負載感知方法論,並提出幾種優化技術,使這些系統能夠有效處理先進的圖演算法。更具體地說,本書提出了一個工作負載感知的成本模型,以指導高效能演算法的開發。在成本模型的基礎上,本書隨後介紹了一個系統級的優化,產生了一個分區感知的圖計算引擎,名為 PAGE。此外,本書還介紹了三種高效且可擴展的先進圖演算法——子圖枚舉、凝聚子圖檢測和圖提取演算法。

本書為初級研究人員提供了一個有價值的參考指南,涵蓋了大規模圖分析的最新進展;對於高級研究人員,則分享了基於先進圖演算法的最先進解決方案。此外,所有讀者都將發現一種工作負載感知的方法論,用於設計高效的大規模圖演算法。

作者簡介

Yingxia Shao is a Research Associate Professor at the School of Computer Science, Beijing University of Posts and Telecommunications. His research interests include large-scale graph analysis, knowledge graph management and representation, and parallel computing. He obtained his PhD from Peking University in 2016, under the supervision of Prof. Bin Cui. He worked with Prof. Lei Chen as a visiting scholar at HKUST in 2013 and 2014. He has served in the Technical Program Committee of various international conferences including VLDB, KDD, AAAI, IJCAI, DASFAA, BigData, APWeb-WAIM and MDM. He is serving as a reviewer of international journals including VLDBJ, DAPD, WWWJ, DSE. He was selected for a Google PhD Fellowship (2014), MSRA Fellowship (2014), PhD National Scholarship of MOE China (2014), ACM SIGMOD China Doctoral Dissertation Award (2017). He is currently a member of the ACM, IEEE, CCF, and China Database technical committee.

Bin Cui is a Professor at the School of EECS and Director of the Institute of Network Computing and Information Systems, at Peking University. He obtained his B.Sc. from Xi'an Jiaotong University (Pilot Class) in 1996, and Ph.D. from National University of Singapore in 2004 respectively. From 2004 to 2006, he worked as a Research Fellow in Singapore-MIT Alliance. His research interests include database system architectures, query and index techniques, and big data management and mining. He has served in the Technical Program Committee of various international conferences including SIGMOD, VLDB, ICDE and KDD, and as Vice PC Chair of ICDE 2011, Demo Co-Chair of ICDE 2014, Area Chair of VLDB 2014, PC Co-Chair of APWeb 2015 and WAIM 2016. He is currently serving as a Trustee Board Member of VLDB Endowment, is on the the Editorial Board of VLDB Journal, Distributed and Parallel Databases Journal, and Information Systems, and was formerly an associate editor of IEEE Transactions on Knowledge and Data Engineering (TKDE, 2009-2013). He was selected for a Microsoft Young Professorship award (MSRA 2008), CCF Young Scientist award (2009), Second Prize of Natural Science Award of MOE China (2014), and appointed a Cheung Kong distinguished Professor by the MOE in 2016. He is a senior member of the IEEE, member of the ACM and distinguished member of the CCF.

Lei Chen received the BS degree in computer science and engineering from Tianjin University, Tianjin, China, in 1994, the MA degree from Asian Institute of Technology, Bangkok, Thailand, in 1997, and the Ph.D. degree in computer science from the University of Waterloo, Canada, in 2005. He is currently a Full Professor at the Department of Computer Science and Engineering, Hong Kong University of Science and Technology. His research interests include crowdsourcing, social media analysis, probabilistic and uncertain databases, and privacy-preserved data publishing. The system developed by his team won the excellent demonstration award at the VLDB 2014. He was selected for the SIGMOD Test-of-Time Award in 2015. He is PC Track chairs for SIGMOD 2014, VLDB 2014, ICDE 2012, CIKM 2012, SIGMM 2011. He has served as PC members for SIGMOD, VLDB, ICDE, SIGMM, and WWW. Currently, he serves as PC co-chair for VLDB 2019, Editor-in-Chief of VLDB Journal and associate editor-in-chief of IEEE Transactions on Data and Knowledge Engineering. He is an IEEE fellow, a member of the VLDB endowment and an ACM Distinguished Scientist.


作者簡介(中文翻譯)

邵英霞是北京郵電大學計算機科學學院的研究副教授。他的研究興趣包括大規模圖分析、知識圖譜管理與表示以及並行計算。他於2016年在北京大學獲得博士學位,指導教授為崔斌教授。他於2013年和2014年作為訪問學者與陳雷教授在香港科技大學合作。他曾擔任多個國際會議的技術程序委員會成員,包括VLDB、KDD、AAAI、IJCAI、DASFAA、BigData、APWeb-WAIM和MDM。他目前擔任國際期刊的審稿人,包括VLDBJ、DAPD、WWWJ和DSE。他曾獲得Google博士獎學金(2014年)、MSRA獎學金(2014年)、中國教育部博士國家獎學金(2014年)、ACM SIGMOD中國博士論文獎(2017年)。他目前是ACM、IEEE、CCF及中國數據庫技術委員會的成員。

崔斌是北京大學電子工程與計算機科學學院的教授及網絡計算與信息系統研究所所長。他於1996年在西安交通大學(試點班)獲得學士學位,並於2004年在新加坡國立大學獲得博士學位。從2004年到2006年,他在新加坡-麻省理工學院聯盟擔任研究員。他的研究興趣包括數據庫系統架構、查詢與索引技術,以及大數據管理與挖掘。他曾擔任多個國際會議的技術程序委員會成員,包括SIGMOD、VLDB、ICDE和KDD,並擔任2011年ICDE的副程序主席、2014年ICDE的演示共同主席、2014年VLDB的區域主席、2015年APWeb和2016年WAIM的程序共同主席。他目前擔任VLDB基金會的受託人董事會成員,並在VLDB期刊、分佈式與並行數據庫期刊及信息系統的編輯委員會中任職,曾擔任IEEE知識與數據工程學報(TKDE,2009-2013)的副編輯。他曾獲得微軟青年教授獎(MSRA 2008)、CCF青年科學家獎(2009)、中國教育部自然科學獎二等獎(2014年),並於2016年被教育部聘為長江學者特聘教授。他是IEEE的資深會員,ACM的成員及CCF的傑出會員。

陳雷於1994年在中國天津大學獲得計算機科學與工程學士學位,1997年在泰國亞洲科技大學獲得碩士學位,並於2005年在加拿大滑鐵盧大學獲得計算機科學博士學位。他目前是香港科技大學計算機科學與工程系的全職教授。他的研究興趣包括眾包、社交媒體分析、概率與不確定數據庫以及隱私保護數據發布。他的團隊開發的系統在2014年VLDB中獲得優秀演示獎。他於2015年獲得SIGMOD時代獎。他曾擔任SIGMOD 2014、VLDB 2014、ICDE 2012、CIKM 2012和SIGMM 2011的程序委員會追蹤主席,並擔任SIGMOD、VLDB、ICDE、SIGMM和WWW的程序委員會成員。目前,他擔任2019年VLDB的程序共同主席、VLDB期刊的主編及IEEE數據與知識工程學報的副主編。他是IEEE會士,VLDB基金會的成員及ACM傑出科學家。