Fog Computing, Deep Learning and Big Data Analytics-Research Directions
暫譯: 雲端計算、深度學習與大數據分析的研究方向

C.S.R. Prabhu

相關主題

商品描述

This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smart homes, smart vehicles, augmented reality and transportation management.
 
This book explores the research issues involved in the application of traditional shallow machine learning and deep learning techniques to big data analytics. It surveys global research advances in extending the conventional unsupervised or clustering algorithms, extending supervised and semi-supervised algorithms and association rule mining algorithms to big data Scenarios. Further it discusses the deep learning applications of big data analytics to fields of computer vision and speech processing, and describes applications such as semantic indexing and data tagging. Lastly it identifies 25 unsolved research problems and research directions in fog computing, as well as in the context of applying deep learning techniques to big data analytics, such as dimensionality reduction in high-dimensional data and improved formulation of data abstractions along with possible directions for their solutions.

商品描述(中文翻譯)

這本書提供了雲霧計算技術的全面概述,包括雲霧架構、具實時需求的延遲感知應用管理問題、安全性和隱私問題以及雲霧分析,涵蓋了廣泛的應用場景,如機器對機器(M2M)設備通信、智慧家庭、智慧車輛、擴增實境和交通管理。

本書探討了將傳統的淺層機器學習和深度學習技術應用於大數據分析所涉及的研究問題。它調查了全球在擴展傳統無監督或聚類算法、擴展監督和半監督算法以及關聯規則挖掘算法到大數據場景方面的研究進展。此外,它討論了大數據分析在計算機視覺和語音處理領域的深度學習應用,並描述了語義索引和數據標記等應用。最後,它確定了25個未解決的研究問題和研究方向,涉及雲霧計算以及在將深度學習技術應用於大數據分析的背景下,如高維數據的降維和數據抽象的改進表述,以及可能的解決方向。